Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề: Dẫn 17,92 lít khí hidro đi qua ống sứ m gam , 1 oxit sắt FexOy nung nóng sau phản ứng thu được 2,4*10^23 phân tử nước và hỗn hợp X gồm 2 chất rắng nặng 28.4 g
a.
FN là tiếp tuyến tại N \(\Rightarrow\widehat{FNO}=90^0\)
\(\Rightarrow\) 2 điểm P và N cùng nhìn OF dưới 1 góc vuông nên tứ giác ONFP nội tiếp đường tròn đường kính ON
b.
Trong tam giác MQF, do \(PQ\perp ME\) và \(MN\perp FQ\Rightarrow O\) là trực tâm
\(\Rightarrow FO\perp MQ\) tại D
Hai điểm D và N cùng nhìn MF dưới 1 góc vuông
\(\Rightarrow DNFM\) nội tiếp
\(\Rightarrow\widehat{FDN}=\widehat{FMN}\) (cùng chắn FN) (1)
Hai điểm D và P cùng nhìn OM dưới 1 góc vuông
\(\Rightarrow MDOP\) nội tiếp
\(\Rightarrow\widehat{FMN}=\widehat{FDP}\) (cùng chắn OP) (2)
(1);(2) \(\Rightarrow\widehat{FDP}=\widehat{FDN}\)
\(\Rightarrow DF\) là phân giác của \(\widehat{PDN}\)
c.
Do MN là đường kính và E thuộc đường tròn \(\Rightarrow\widehat{MEN}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{MEN}=90^0\Rightarrow NE\perp ME\)
Áp dụng hệ thức lượng trong tam giác vuông MNF với đường cao NE:
\(MN^2=ME.MF\Rightarrow\left(2R\right)^2=ME.MF\)
\(\Rightarrow ME.MF=4R^2\)
Từ đó áp dụng BĐT Cô-si ta có:
\(MF+2ME\ge2\sqrt{MF.2ME}=2\sqrt{8R^2}=4R\sqrt{2}\)
Dấu "=" xảy ra khi \(MF=2ME\Rightarrow E\) là trung điểm MF
\(\Rightarrow NE\) là trung tuyến ứng với cạnh huyền
\(\Rightarrow NE=\dfrac{1}{2}MF=ME\)
\(\Rightarrow E\) là điểm chính giữa cung MN
đề : Cho đoạn thẳng AB cùng điểm C thuộc đoạn thẳng đó (C khác A và B). Về cùng một nửa mặt phẳng bờ AB, kẻ hai tia Ax và By cùng vuông góc với AB. Trên tia Ax lấy điểm M cố định. Kẻ tia Cz vuông góc với tia CM tại C, tia Cz cắt tia By tại K. Vẽ đường tròn tâm O đường kính MC cắt MK tại E
Xét hình a.Cạnh lớn trong hai cạnh còn lại là cạnh đối diện với góc 45o. Gọi cạnh đó là x. Ta có
Xét hình b. Cạnh lớn trong hai cạnh là cạnh kề với góc 45o. Gọi cạnh đó là y. Ta có:
Xét hình a.Cạnh lớn trong hai cạnh còn lại là cạnh đối diện với góc 45o. Gọi cạnh đó là x. Ta có
Xét hình b. Cạnh lớn trong hai cạnh là cạnh kề với góc 45o. Gọi cạnh đó là y. Ta có:
Cách 1: Đặt tên các đoạn thẳng như hình bên.
Ta có:
.
Suy ra vuông tại A.
Áp dụng hệ thức ta có:
Cách 2:
Cũng chứng minh vuông như cách 1.
Áp dụng hệ thức ta được .
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>AM\(\perp\)MB tại M
=>AM\(\perp\)SB tại M
Xét tứ giác SPAM có \(\widehat{SPA}+\widehat{SMA}=180^0\)
nên SPAM là tứ giác nội tiếp
=>S,P,A,M cùng thuộc một đường tròn
b: Cái này mình xin nói luôn về góc nội tiếp nha bạn: Góc nội tiếp là góc có đỉnh thuộc vào đường tròn, có hai cạnh là hai dây của đường tròn.
Tính chất thì sẽ là Góc nội tiếp bằng một nửa số đo cung bị chắn
Bây giờ mình xin phép làm như sau nha:
M đối xứng M' qua AB
=>AB là đường trung trực của MM'
=>AB\(\perp\)MM' tại trung điểm của MM' và AM=AM'
AM=AM'
=>ΔAMM' cân tại A
AB\(\perp\)MM'
SS'\(\perp\)BA
Do đó: MM'//SS'
Xét ΔAMM' và ΔAS'S có
\(\widehat{AMM'}=\widehat{AS'S}\)(hai góc so le trong, MM'//SS')
\(\widehat{MAM'}=\widehat{S'AS}\)(hai góc đối đỉnh)
Do đó: ΔAMM'\(\sim\)ΔAS'S
=>\(\dfrac{AM}{AS'}=\dfrac{AM'}{AS}\)
mà AM=AM'
nên AS'=AS
=>ΔAS'S cân tại A
=>\(\widehat{ASS'}=\widehat{AS'S}\)
mà \(\widehat{ASS'}=\widehat{AMP}\)(APSM là tứ giác nội tiếp)
nên \(\widehat{PS'M}=\widehat{PMS'}\)
=>ΔPS'M cân tại P