K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2016

Lập hai pt độc lập với thời gian:

\(A^2=x_1^2+\left(\frac{v_1}{\omega}\right)^2\)

\(A^2=x_2^2+\left(\frac{v_2}{\omega}\right)^2\)

cho hai VP bằng nhau, giải pt  được ω=20 (rad/s)

Thay vào 1 trong 2 pt đầu được A=6(cm)

Chúc bạn học tốt! :D

28 tháng 8 2016

Cảm ơn bạn :D

 

26 tháng 5 2016

Theo công thức liên hệ chiều dài day và số bụng sóng ta có $2,4=8.\dfrac{\lambda}{2} \Rightarrow \lambda =0,6m=60 cm$

Công thức tính biên độ tại một điểm bất kì trên sợi dây cách nút gần nhất một khoảng là d đang có sóng dừng với biên độ tại bụng là 2A:

$a=2A \cos \left(\dfrac{2 \pi d}{\lambda} +\dfrac{\pi }{2} \right).$

Gọi khoảng cách từ A tới nút gần nhất là d thì do $\dfrac{\lambda}{4}<20$ nên ta có B cách nút gần nhất với nó một khoảng 10-d.

$| a_A-a_B |=2A |\left(\dfrac{2 \pi d}{\lambda} +\dfrac{\pi }{2} \right)-\left(\dfrac{2 \pi \left(10-d\right)}{\lambda} +\dfrac{\pi }{2} \right) |$

$=4A |\sin \left(\dfrac{10 \pi }{\lambda}+\dfrac{\pi }{2} \right) | |\sin \left(\dfrac{\pi \left(2x-10\right)}{\lambda}\right) |.$

Biểu thức trên lớn nhất khi $|\sin \left(\dfrac{\pi \left(2x-10\right)}{\lambda}\right) |$ lớn nhất, tức là bằng 1.

Thay số ta có đáp án D

20 tháng 5 2016

Bài này chỉ cần sử dụng công thức 2 giá trị của C để có cùng 1 giá trị của $U_C$ :

$U_C=U_{C_{max}} \cos \left(\dfrac{\varphi _1-\varphi _2}{2} \right)$

$\Rightarrow U_{C_{max}}=\dfrac{60}{\cos \dfrac{\pi }{6}}=40\sqrt{3} V$

Khi $U_{C_{max}}$ ta có:

$P=\dfrac{U^2}{R}\cos ^2\varphi _3=P_{max}\cos ^2\varphi _3=\dfrac{P_{max}}{2}$

$\Rightarrow \cos \varphi _3=\dfrac{\sqrt{2}}{2}$

Vẽ giản đồ suy ra: $U=\dfrac{U_{C_{max}}}{\sqrt{2}}=20\sqrt{6}\left(V \right)$

30 tháng 5 2017

Đáp án A

23 tháng 8 2016

Bạn áp dụng CT của dao động điều hòa:

\(A^2=x^2+\dfrac{v^2}{\omega^2}\)

Với \(x=\alpha.\ell\), li độ là độ dài cung của góc \(\alpha\) (tính theo rad)

\(\Rightarrow (\alpha_0.\ell)^2=(\alpha.\ell)^2+\dfrac{v^2.\ell}{g}\)

\(\Rightarrow \alpha_0^2=\alpha^2+\dfrac{v^2}{g\ell}\)

Chọn đáp án A.

23 tháng 8 2016

Cảm ơn bạn vui

26 tháng 12 2014

Như ta biết, bản chất của giao thoa sóng là tổng hợp dao động do 2 nguồn truyền đến.

Do đó, dao động tại M là tổng hợp 2 dao động do A và B truyền đến.

Bước sóng: \(\lambda = 30/10 = 3cm\)

Độ lệch pha 2 dao động từ A, B truyền đến là: \(\Delta \varphi = 2\pi\frac{d_2-d_1}{\lambda}=2\pi\frac{13,5-10,5}{3}=2\pi\) (rad)

Biên độ tổng hợp: \(A_M=\sqrt{A_A^2+A_B^2+2A_AA_B\cos\Delta\varphi}=\sqrt{2^2+2^2+2.2.2.\cos2\pi}=4\)(cm)

Đáp án B

20 tháng 5 2016

a 30

\(\omega =4\pi(rad/s)\)

\(|a|\le160\sqrt 3\) ứng với phần gạch đỏ trên hình, thời gian 1/3T ứng với véc tơ quay 1 góc 1200,.

Do vậy, mỗi một góc nhỏ là 300

\(\Rightarrow a_{max}=\dfrac{a}{\sin 30^0}=2a=320\sqrt 3(cm/s) \)

\(\Rightarrow A = \dfrac{a_{max}}{\omega^2}=2\sqrt 3(cm)\)

Cơ năng: \(W=\dfrac{1}{2}kA^2\Rightarrow k=\dfrac{2W}{A^2}=\dfrac{0,004}{(0,02\sqrt 3)^2}=...\)