Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài này thì mình ko biết
đáp án nhưng mình cho cậu 1 bài tương tự nhé
bạn mai thị huỳnh phương đã ko biết mà còn viết tầm bậy , bạn ấy đã vi phạm nội quy ONLINE MATH rùi nha ! ONLINE trừ điểm đi

Gọi số học sinh giỏi lớp 7A,7B,7C là a,b,c(học sinh)(a,b,c∈N*)
Áp dụng t/c dtsbn:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{12}{4}=3\)
\(\Rightarrow\left\{{}\begin{matrix}a=3.3=9\\b=3.5=15\\c=3.7=21\end{matrix}\right.\)
Vậy...

Ta đặt : 7A = 7k ; 7B = 8k ; 7C = 9k
=> 7C - 7B = 9k - 8k = 2
=> k = 2
Ta có : 7A = 7.2 = 14 (hs)
7B = 8.2 = 16 (hs)
7C = 9.2 = 18 (hs)
Vậy ...
Gọi số h/s giỏi của 3 lớp 7A, 7B, 7C là a, b, c (học sinh; a, b, c \(\in\)N*)
Vì số h/s giỏi của 3 lớp 7A, 7B, 7C tỉ lệ với các số 7, 8, 9 nên \(\frac{a}{7}=\frac{b}{8}=\frac{c}{9}\)
Vì số h/s giỏi của lớp 7C ... 2 học sinh nên c - b = 2
Áp dụng tính chất DTSBN:
\(\frac{a}{7}=\frac{b}{8}=\frac{c}{9}=\frac{c-b}{9-8}=\frac{2}{1}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{7}=2\Rightarrow a=2.7=14\\\frac{b}{8}=2\Rightarrow b=2.8=16\\\frac{c}{9}=2\Rightarrow c=2.9=18\end{cases}}\)(Thỏa mãn điều kiện)
Vậy số h/s giỏi của 3 lớp 7A, 7B, 7C lần lượt là 14, 16, 18

Gọi số học sinh đạt hsg của 3 lớp lần lượt là x , y , z ta có:
\(\frac{x}{5}\)= \(\frac{y}{4}\) (vì x tỉ lệ với 5 còn y tỉ lệ với 4)
\(\frac{y}{3}\)=\(\frac{z}{5}\)(vì y tỉ lệ với 3 còn z tỉ lệ với 5)
và giả thiết bài toán là x+y+z = 47
Nhân chéo lại ta được => \(\hept{\begin{cases}4x=5y\\5y=3z\\x+y+z=47\end{cases}}\)
giải hệ ta được x=15 ; y=12; z=20
Gọi số học sinh giỏi Toán, Anh, Văn lần lượt là x,y,z
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{y+z-x}{3+4-6}=8\)
Do đó: x=48; y=32; z=24