Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh khối đó là a.Theo bài ra,ta có :
- Khi xếp hàng 2,3,4,5,6 đều thiếu 1 em => a + 1 chia hết cho 2,3,4,5,6
Trước hết ta tìm BCNN(2,3,4,5,6)=60
Tiếp theo ta tìm các BS của 60 : {0;60;120;180;240;300;...}
=> a = { 59;119;179;239;299;..}
Vì a < 300 và chia hết cho 7 nên ta tìm được số 119 thỏa mãn yêu cầu đề bài trên => số học sinh khối đó là 119
~~Học tốt ~~^_^
Vi hoc sinh thu 1 chia cho 4 to thi vua du nen so hoc sinh phai la
B(4)va >40 Ma B(4)<40 nen so can tim la
{0,4,...,36}
Vi khi chia 6 to thi vua du nen so hoc sinh la B(6)Ma B(6)={0.12,...,36} la nhung so < 40.Vay so can tim la 36
Gọi số học sinh khối 6 là x
Theo đề, ta có: \(\left\{{}\begin{matrix}x+1\in BC\left(2;3;4;5;6\right)\\x\in B\left(7\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1\in B\left(60\right)\\x\in B\left(7\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1\in\left\{60;120;180;240;300;...\right\}\\x\in B\left(7\right)\end{matrix}\right.\Leftrightarrow x=119\)
Gọi số học sinh là x
theo đề, ta có:
\(\left\{{}\begin{matrix}x-1\in BC\left(2;3;4;8\right)\\x\in B\left(7\right)\\x< =50\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1\in\left\{24;48;72;...\right\}\\x\in\left\{...;35;42;49;...\right\}\\x< =50\end{matrix}\right.\Leftrightarrow x=49\)
Gọi số học sinh lớp 6A là a (học sinh) (a < 40; a \(\in\) N*)
Do số học sinh xếp 4 hay 6 em vào 1 tổ đều vừa đủ nhưng nếu xếp 7 em vào 1 tổ thì thừa ra 1 em
\(\Rightarrow\begin{cases}a⋮4\\a⋮6\\a-1⋮7\end{cases}\)Mà ƯCLN(4;6) = 12 \(\Rightarrow\begin{cases}a⋮12\\a-1⋮7\end{cases}\)\(\Rightarrow\begin{cases}a-36⋮12\\a-1-35⋮7\end{cases}\)\(\Rightarrow\begin{cases}a-36⋮12\\a-36⋮7\end{cases}\) => \(a-36\in BC\left(12;7\right)\)
Mà (12;7)=1 \(\Rightarrow a-36\in B\left(84\right)\)
Mặt khác, -36 < a - 36 < 4 do 0 < a < 40 => a - 36 = 0
=> a = 36
Vậy lớp 6A có 36 học sinh