Lớp 11A có 40 học sinh gồm 20 nam và 20 nữ. Trong 20 học sinh nam, có 5 học sinh xếp l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

Đáp án D

Số phần tử không gian mẫu là:  C 40 4 = 91390 .

Số cách chọn 4 học sinh có cả học sinh xếp loại giỏi, khá, trung bình là:

C 10 2 . C 20 1 . C 10 1 + C 10 1 . C 20 2 . C 10 1 + C 10 1 . C 20 1 . C 10 2 = 37000

Số cách chọn 4 học sinh nam có cả học sinh xếp loại giỏi, khá, trung bình là: 

C 5 2 . C 9 1 . C 6 1 + C 5 1 . C 9 2 . C 6 1 + C 5 1 . C 9 1 . C 6 2 = 2295

Số cách chọn 4 học sinh nữ có cả học sinh xếp loại giỏi, khá, trung bình là: 

C 5 2 . C 11 1 . C 4 1 + C 5 1 . C 11 2 . C 4 1 + C 5 1 . C 11 1 . C 4 2 = 1870

Số cách chọn 4 học sinh có cả nam, nữ có cả học sinh xếp loại giỏi, khá, trung bình là: 

37000 - 2295 - 1870 = 32835

6 tháng 4 2016

Gọi A là biến cố : "4 học sinh được chọn có đủ học sinh giỏi, học sinh khá và học sinh trung bình"

Số phần tử không gian mẫu \(\left|\Omega\right|=C^4_{33}=40920\)

Ta có các trường hợp được chọn sau :

(1) Có 2 học sinh giỏi, 1 học sinh khá và 1 học sinh trung bình. Số cách chọn là : \(C^2_{10}.C^1_{11}.C^1_{12}=5940\).

(2)Có 1 học sinh giỏi, 2 học sinh khá và 1 học sinh trung bình. Số cách chọn là : \(C^1_{10}.C^2_{11}.C^1_{12}=6600\).

(3)Có 1 học sinh giỏi, 1 học sinh khá và 2 học sinh trung bình. Số cách chọn là : \(C^1_{10}.C^1_{11}.C^2_{12}=7260\).

Ta được \(\left|\Omega_A\right|=5940+6600+7260=19800\)

Do đó : \(P\left(A\right)=\frac{\left|\Omega_A\right|}{\left|\Omega\right|}=\frac{15}{31}\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2021

Lời giải:

a. Xác suất chọn hsg là:

$\frac{40}{100}.\frac{70}{100}+\frac{20}{100}.\frac{30}{100}=\frac{17}{50}$

b.

Chọn ngẫu nhiên 3 hs, có $C^3_{100}$ cách chọn 

Số hsg là: $(\frac{40}{100}.\frac{70}{100}+\frac{20}{100}.\frac{30}{100}).100=34$ (hs)

Chọn ngẫu nhiên được 2 hsg có $C^2_{34}C^1_{100-34}=C^2_{34}.C^1_{66}$ cách chọn 

Xác suất cần tìm: $p=\frac{C^2_{34}.C^1_{66}}{C^3_{100}}=\frac{561}{2450}$

n(omega)=12!

A: "Xếp các học sinh thành 1 hàng ngang sao cho ko có 2 học sinh nữ nào đứng cạnh nhau"

=>\(n\left(A\right)=8!\cdot A^4_9\)

=>P=14/55

11 tháng 4 2019

Đáp án D

Gọi A là biến cố “Học sinh được chọn đạt điểm tổng kết loại giỏi môn Hóa học”.

B là biến cố “Học sinh được chọn đạt điểm tổng kết loại giỏi môn Vật lí”.

⇒ A C = a 3       A ∪ B  là biến cố “Học sinh được chọn đạt điểm tổng kết môn Hóa học hoặc Vật lí loại giỏi”.

A ∩ B  là biến cố “Học sinh được chọn đạt điểm tổng kết loại giỏi cả hai môn Hóa học và Vật lí”.

31 tháng 7 2020

Bạn bị ngược rồi, B có 3 người còn A có 4 người mà. Không sao vẫn tính là bạn đang sắp xếp A nhé, mình kí hiệu 4 học sinh A là A1 A2 A3 A4 thì ở chỗ xếp học sinh A ấy bạn mới chỉ xếp cho A1, A2, A3 hoặc A4 mà thôi nên phải nhân 4 nữa. Đáp án phải là D

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

D.Công Thiện: Uh mình nhìn nhầm. Nhưng đáp án không thay đổi bạn ơi. Chỉ cần thay B bằng A thôi mà.

22 tháng 7 2019

Đáp án B.

Số cách chọn 5 em học sinh từ 8 học sinh trên là Piolyf5rhOyJ.pngcách

- Để chọn 5 em thỏa mãn bài ra, ta xét các trường hợp sau

+) 1 nam khối 11, 1 nữ khối 12 và 3 nam khối 12 có o1oifwZb9VIQ.pngcách

+) 1 nam khối 11, 2 nữ khối 12 và 2 nam khối 12 có SgWZQ31JqDHD.pngcách

+) 2 nam khối 11, 1 nữ khối 12 và 2 nam khối 12 có 4ym1QJo6EGo9.pngcách

+) 2 nam khối 11, 2 nữ khối 12 và 1 nam khối 12 có hTymGnNoQmH9.pngcách

- Số cách chọn 5 em thỏa mãn bài ra là:

ornUidD4BtVp.pngcách

Vậy xác suất cần tính là: mqepdKQ62mFx.png

17 tháng 12 2017