Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q^3=\dfrac{b^3-3b+\left(b^2-1\right)\sqrt{b^2-4}+b^3-3b-\left(b^2-1\right)\sqrt{b^2-4}}{2}+3Q\sqrt[3]{\dfrac{\left(b^3-3b+\left(b^2-1\right)\sqrt{b^2-4}\right)\left(b^3-3b-\left(b^2-1\right)\sqrt{b^2-4}\right)}{4}}\)
\(Q^3=\dfrac{2b^3-6b}{2}+3Q\sqrt[3]{\dfrac{\left(b^3-3b\right)^2-\left(b^2-1\right)^2\left(b^2-4\right)}{4}}\\ Q^3=b^3-3b+3Q\sqrt[3]{\dfrac{b^6-6b^4+9b^2-b^6+6b^4-9b^2+4}{4}}\\ Q^3=b^3-3b+3Q\sqrt[3]{\dfrac{4}{4}}=b^3-3b+3Q\\ \Leftrightarrow Q^3-3Q=b^3-3b\\ \Leftrightarrow Q\left(Q^2-3\right)=b\left(b^2-3\right)\)
\(\Leftrightarrow Q=b=\sqrt[3]{2020}\) (hmm ko chắc)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
- Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi
\(ab+bc+ca=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x;y;z>0\\x+y+z=3\end{matrix}\right.\)
\(P=\dfrac{x}{\left(3-x\right)^2}+\dfrac{y}{\left(3-y\right)^2}+\dfrac{z}{\left(3-z\right)^2}\)
Ta có đánh giá sau: \(\dfrac{t}{\left(3-t\right)^2}\ge\dfrac{2t-1}{4};\forall t\in\left(0;3\right)\)
Thực vậy, BĐT đã cho tương đương:
\(4t\ge\left(2t-1\right)\left(3-t\right)^2\)
\(\Leftrightarrow-2t^3+13t^2-20t+9\ge0\)
\(\Leftrightarrow\left(9-2t\right)\left(t-1\right)^2\ge0\) (luôn đúng với \(t< 3\))
Áp dụng ta được:
\(P\ge\dfrac{2x-1}{4}+\dfrac{2y-1}{4}+\dfrac{2z-1}{4}=\dfrac{2\left(x+y+z\right)-3}{4}=\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
Cách khác:
Sau khi đặt ẩn phụ, ta có:
\(P=\dfrac{x}{\left(3-x\right)^2}+\dfrac{y}{\left(3-y\right)^2}+\dfrac{z}{\left(3-z\right)^2}=\dfrac{x}{\left(y+z\right)^2}+\dfrac{y}{\left(z+x\right)^2}+\dfrac{z}{\left(x+y\right)^2}\)
\(\Rightarrow3P=\left(x+y+z\right)\left(\dfrac{x}{\left(y+z\right)^2}+\dfrac{y}{\left(z+x\right)^2}+\dfrac{z}{\left(x+y\right)^2}\right)\ge\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)^2\ge\dfrac{9}{4}\)
(BĐT Netsbitt)
\(\Rightarrow P\ge\dfrac{3}{4}\)
\(Q=\sqrt[3]{\frac{b^3-3b+\left(b^2-1\right)\sqrt{b^2-4}}{2}}+\sqrt[3]{\frac{b^3-3b-\left(b^2-1\right)\sqrt{b^2-4}}{2}}\)
\(\Leftrightarrow Q^3=b^3-3b+3Q\sqrt[3]{\frac{b^3-3b+\left(b^2-1\right)\sqrt{b^2-4}}{2}}.\sqrt[3]{\frac{b^3-3b-\left(b^2-1\right)\sqrt{b^2-4}}{2}}\)
\(\Leftrightarrow Q^3=b^3-3b+3Q\)
\(\Leftrightarrow\left(Q-b\right)\left(Q^2+Qb+b^2-3\right)=0\)
Dễ thấy \(Q^2+Qb+b^2-3>0\)
\(\Rightarrow Q=b=\sqrt[3]{2020}\)
+) Ta có \(\sqrt{4a\left(3a+b\right)}\le\frac{4a+\left(3a+b\right)}{2}=\frac{7a+b}{2}\)
\(\Rightarrow\sqrt{a\left(3a+b\right)}\le\frac{7a+b}{4}\left(2\right)\)
+) Tương tự ta lại có :
\(\sqrt{b\left(3b+a\right)}\le\frac{7b+a}{4}\left(3\right)\)
+) Từ (2) và (3) ta có :
\(VT\left(1\right)\ge\frac{a+b}{\frac{7a+b}{4}+\frac{7b+a}{4}}=\frac{1}{2}\left(đpcm\right)\)
Ta có: \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\)
\(=\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\ge\frac{2\left(a+b\right)}{\frac{1}{2}\left(4a+3a+b\right)+\frac{1}{2}\left(4b+3b+a\right)}\) (Cauchy)
\(=\frac{2\left(a+b\right)}{4\left(a+b\right)}=\frac{1}{2}\)
Dấu "=" xảy ra khi: a = b
Đặt \(log_{10a+3b+1}\left(25a^2+b^2+1\right)=t\Rightarrow log_{10ab+1}\left(10a+3b+1\right)=2-t\)
\(\Leftrightarrow\hept{\begin{cases}\left(10a+3b+1\right)^t=25a^2+b^2+1\\\left(10ab+1\right)^{2-t}=10a+3b+1\end{cases}}\)
Áp dụng cô si ta có:
\(25a^2+b^2+1\ge10ab+1\)
\(\Leftrightarrow\left(10a+3b+1\right)^t\ge10ab+1\)
\(\Leftrightarrow\left(10a+3b+1\right)^{t\left(2-t\right)}\ge\left(10ab+1\right)^{2-t}\)
\(\Leftrightarrow\left(10a+3b+1\right)^{t\left(2-t\right)}\ge10a+3b+1\)
\(\Rightarrow t\left(2-t\right)\ge1\)
\(\Leftrightarrow-t^2+2t-1\ge0\)
\(\Rightarrow t=1\)
Giải hpt: \(\hept{\begin{cases}10a+3b+1=25a^2+b^2+1\\10ab+1=10a+3b+1\end{cases}}\)là ra kq
Gọi G là trọng tâm của tam giác ABC
BG cắt AC tại M (M là trung điểm của AC)
BG vuông góc với đáy
Trong tam giác BB'G ta có: BG=BB'.cos(60)=1/2.a ; B'G=BB'.sin(60)=\(\frac{a\sqrt{3}}{2}\)
BM=3/2.BG=3/4.a
Đặt BC=AC=x => CM=1/2.x
BC2+CM2=BM2
<=> x2+1/4.x2=9/16.a2
=> x=\(\frac{3\sqrt{5}}{10}a\)
Diện tích tam giác ABC=1/2. AC.BC=9/40.a2
Thể tích lăng trụ = S(ABC).B'G=9/40.a2.\(\frac{a\sqrt{3}}{2}\)=\(\frac{a^3.9\sqrt{3}}{80}\)