Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{100}{x^2-20x+25}=\frac{100}{\left(x^2-20x+100\right)-75}=\frac{100}{\left(x-10\right)^2-75}\le\frac{100}{-75}=-\frac{4}{3}\)
Đặt số ngày người thứ nhất làm riêng thì xong công việc lần lượt là \(x\)(ngày), \(x>4\).
Mỗi ngày người thứ nhất làm được số phần công việc là: \(\frac{1}{x}\)(công việc)
Mỗi ngày người thứ hai làm được số phần công việc là: \(\frac{1}{4}-\frac{1}{x}=\frac{x-4}{4x}\)(công việc)
Người thứ hai hoàn thành công việc sau số ngày là: \(\frac{4x}{x-4}\)(ngày)
Ta có phương trình:
\(\frac{4x}{x-4}-x=6\)
\(\Leftrightarrow\frac{4x-\left(x^2-4x\right)}{x-4}=\frac{6x-24}{x-4}\)
\(\Rightarrow-x^2+2x+24=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-4\left(l\right)\\x=6\left(tm\right)\end{cases}}\)
Vậy nếu làm một mình, người thứ nhất xong công việc trong \(6\)ngày, người thứ hai xong công việc trong \(\frac{4.6}{6-4}=12\)ngày.
`|x-2|=2x-3(x>=3/2)`
`<=>` \(\left[ \begin{array}{l}x-2=2x-3\\x-2=3-2x\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=1(l)\\3x=5\end{array} \right.\)
`<=>x=5/3(Tm(`
`2)A=-x^2+2x+9`
`=-(x^2-2x)+9`
`=-(x^2-2x+1)+1+9`
`=-(x-1)^2+10<=10`
Dấu "=" xảy ra khi `x=1.`
1,
* \(|x-2|=x-2< =>x\ge2\)
\(=>x-2=2x-3< =>x=1\left(ktm\right)\)
*\(\left|x-2\right|=2-x< =>x< 2\)
\(=>2-x=2x-3< =>x=\dfrac{5}{3}\left(tm\right)\)
vậy x=5/3
2, \(A=-x^2+2x+9=-\left(x^2-2x-9\right)=-\left(x^2-2x+1-10\right)\)
\(=-\left[\left(x-1\right)^2-10\right]=-\left(x-1\right)^2+10\le10\)
dấu"=" xảy ra<=>x=1
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=\left(\frac{-1}{z}\right)^3\)
\(\Leftrightarrow\frac{1}{x^3}+3\frac{1}{x^2}\frac{1}{y}+3\frac{1}{x}\frac{1}{y^2}+\frac{1}{y^3}=\frac{-1}{z^3}\)
\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-3.\frac{1}{x}\frac{1}{y}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-3.\frac{1}{x}\frac{1}{y}\frac{-1}{z}\)
\(\Leftrightarrow\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)xyz=3.\frac{1}{x}\frac{1}{y}\frac{1}{z}.xyz\)
\(\Leftrightarrow\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}=3\)
\(1+2+....+2^{99}=2\left(1+2+....+2^{99}\right)-1-2-....-2^{99}=2^{100}-1\)
\(\Rightarrow2^{100}-\left(1+2+....+2^{99}\right)=2^{100}-\left(2^{100}-1\right)=1\)
Đặt biểu thức đã cho là A
\(\Rightarrow A=2^{100}-\left(2^{99}+2^{98}+2^{97}+......+2^2+2+1\right)\)
Đặt \(B=2^{99}+2^{98}+2^{97}+.......+2^2+2+1\)
\(\Rightarrow2B=2^{100}+2^{99}+2^{98}+.........+2^3+2^2+2\)
\(\Rightarrow2B-B=B=2^{100}-1\)
\(\Rightarrow A=2^{100}-B=2^{100}-\left(2^{100}-1\right)=2^{100}-2^{100}+1=1\)