Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. Xét tam giác ADM và tam giác AEM có :
góc ADM = góc AEM = 90 độ
Góc BAM = góc CAM (gt)
AM chung
=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)
=>MD = ME (cặp cạnh t/ứng )
AD = AE (cặp cạnh t/ứng )
Xét tam giác MDB và tam giác MEC có :
MB = MC (gt)
góc MDB = góc MEC = 90 độ
MD = ME ( câu a)
=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)
Vì AD + DB = AB
AE + EC = AC
Mà AD = AE
DB = EC
=>AB = AC
Xét tam giác ABM và tam giác ACM có
AM chung
góc BAM = góc CAM (gt)
AB = AC (CMT)
=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)
Vậy có 3 cặp tam giác bằng nhau
Em vào đây nhé Vẽ hình trực tuyến trên hoc24 | Hướng dẫn tạo khóa học trên hoc24 | Học trực tuyến
Vẽ hình trực tuyến trên hoc24 | Hướng dẫn tạo khóa học trên hoc24 | Học trực tuyến
Ấn vào cái chữ màu xanh nhé!
a+1/2=c+2/4=c+1/2=>a=c=>3a=3c
b+2/3=c+2/4=c+1/2=>b=c+1/2-2/3=c-1/6=>2b=2c-1/3
3a-2b+c=3c-2c+1/3+c=2c+1/3=105
=>2c=314/3=>c=157/3
b=c-1/6=157/3-1/6=313/6
a=c=157/3
\(P=\left(-1\right)^n.\left(-1\right)^{2n+1}.\left(-1\right)^{n+1}\)
\(P=\left(-1\right)^{n+2n+1+n+1}\)
\(P=\left(-1\right)^{\left(n+2n+n\right)+\left(1+1\right)}\)
\(P=\left(-1\right)^{4n+2}\)
\(\left|x-\dfrac{1}{2}\right|+\left|y+\dfrac{2}{3}\right|+\left|x^2+xz\right|=0\)
\(\left\{{}\begin{matrix}\left|x-\dfrac{1}{2}\right|\ge0\forall x\\\left|y+\dfrac{2}{3}\right|\ge0\forall y\\\left|x^2+xz\right|\ge0\forall x;z\end{matrix}\right.\) \(\Rightarrow\left|x-\dfrac{1}{2}\right|+\left|y+\dfrac{2}{3}\right|+\left|x^2+xz\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-\dfrac{1}{2}\right|=0\\\left|y+\dfrac{2}{3}\right|=0\\\left|x^2+xz\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{2}{3}\\z=-\dfrac{1}{2}\end{matrix}\right.\)
a) Gọi \(A=1-x^2\)
Ta có: \(x^2\ge0\Rightarrow-x^2\le0\Rightarrow A=1-x^2\le1\)
Dấu " = " khi \(x^2=0\Rightarrow x=0\)
Vậy \(MAX_A=1\) khi x = 0
b) Đặt \(B=-3y^2\)
Ta có: \(3y^2\ge0\Rightarrow-3y^2\le0\)
Dấu " = " khi \(-3y^2=0\Rightarrow y=0\)
Vậy \(MAX_B=0\) khi y = 0
c) Đặt \(C=10-\left(2x-1\right)^2\)
Ta có: \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow-\left(2x-1\right)^2\le0\)
\(\Rightarrow10-\left(2x-1\right)^2\le10\)
Dấu " = " khi \(\left(2x-1\right)^2=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy \(MAX_C=10\) khi \(x=\frac{1}{2}\)