K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

\(d\left(A\left(P\right)\right)=\frac{\left|2\left(-2\right)-2.1+1.5-1\right|}{\sqrt{2^2+\left(-2\right)^2+1^2}}=\frac{2}{3}\)

(P) có vectơ pháp tuyến là \(\overrightarrow{n_p}=\left(2;-2;1\right);\)

d có vectơ pháp tuyến là \(\overrightarrow{u_d}=\left(2;3;1\right);\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(-5;0;10\right)\)

Theo giả thiết suy ra (Q) nhận \(\overrightarrow{n}=-\frac{1}{5}\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(1;0;-2\right)\) làm vectơ pháp tuyến 

Suy ra \(\left(Q\right):x-2z+12=0\)

 
26 tháng 4 2017

a) Ta có: d(M;\(\Delta\))=\(\dfrac{\left|3.1+4.2-1\right|}{\sqrt{3^2+4^2}}=2\)

PTTS của \(\Delta\):\(\left\{{}\begin{matrix}x=4t-1\\y=3t-1\end{matrix}\right.\)

Gọi H là hình chiếu của M trên\(\Delta\)=>\(\exists t\in R\)để H(4t-1;3t-1)

MH=2 =>(4t-2)2+(3t+1)2=4

<=>25t2+10t+1=0

<=>(5t+1)2=0

<=>\(t=-\dfrac{1}{5}\)

=>H\(\left(-\dfrac{9}{5};-\dfrac{8}{5}\right)\)

M' đối xứng với M qua \(\Delta\)=> H là TĐ của MM'

=>tọa độ M'\(\left(-\dfrac{23}{5};-\dfrac{6}{5}\right)\)

b)\(\Delta'\)đối xứng \(\Delta\)qua M=>VTPT của \(\Delta'\)\(\overrightarrow{n}=\left(3;-4\right)\)(1)

Lấy I(-1;-1) => I thuộc \(\Delta\)

Lấy I' đối xứng I qua M=>I'(3;-3) \(\in\Delta'\)(2)

Từ (1) và (2) => phương trình \(\Delta':\)3(x-3)-4(y+3)=0

hay 3x-4y-21=0

c)Đường tròn (C) có tâm M(1;-2) tiếp xúc \(\Delta\)=> bán kính đường tròn bằng \(d_{\left(M;\Delta\right)}\)=2

=>Phương trình đường tròn:

(C): (x-1)2+(y+2)2=4

NV
10 tháng 5 2020

Đường tròn (C1) có tâm I(1;-2) bán kính \(R=\sqrt{5}\)

Đường tròn (C2) có tâm \(J\left(-1;-3\right)\) bán kính \(R=3\)

Áp dụng Pitago: \(d\left(J;d\right)=\sqrt{R^2-\left(\frac{AB}{2}\right)^2}=\sqrt{5}\)

\(\Rightarrow d\left(I;d\right)=d\left(J;d\right)\Rightarrow d//IJ\) (dễ dàng loại trường hợp d đi qua trung điểm của IJ, vì trung điểm của IJ nằm trong (C1))

\(\overrightarrow{JI}=\left(2;1\right)\Rightarrow\) d nhận \(\left(1;-2\right)\) là 1 vtpt

Phương trình d có dạng: \(x-2y+c=0\)

\(d\left(I;d\right)=\sqrt{5}\Rightarrow\frac{\left|1.1-\left(-2\right).2+c\right|}{\sqrt{1^2+2^2}}=\sqrt{5}\)

\(\Rightarrow\left|c+5\right|=5\Rightarrow\left[{}\begin{matrix}c=0\\c=-10\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-2y=0\\x-2y-10=0\end{matrix}\right.\)

27 tháng 5 2020

Hỏi đáp Toán

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng