Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDC có
N là trung điểm của BC
N là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Xét ΔBAC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
a): ta có AB^2 + AC^2 = 30^2 = 900 <=> AB = √(900 - AC^2)
AB:AC = 3:4 <=> AB = 3 * AC / 4
=> √(900 - AC^2) = 3 * AC / 4
<=> 900 - AC^2 = 9 * AC^2 / 16
<=> 14400 - 16 * AC^2 = 9 * AC^2
<=> 14400 = 25 * AC^2
<=> 576 = AC^2
<=> AC = 24
=> AB = 24 / 4 * 3 = 18
Lời giải:
$a^2+b^2=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})+(a+b-\frac{1}{2})$
$=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2+(a+b-\frac{1}{2})$
$\geq a+b-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}$
Vậy $a^2+b^2\geq \frac{1}{2}$
Giá trị này đạt tại $a-\frac{1}{2}=b-\frac{1}{2}=0$
$\Leftrightarrow a=b=\frac{1}{2}$
57:
a: \(x^2-4x+3=\left(x-1\right)\left(x-3\right)\)
b: \(x^2+5x+4=\left(x+1\right)\left(x+4\right)\)
c: \(x^2-x-6=\left(x-3\right)\left(x+2\right)\)
d: \(x^4+4=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)