loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(B=\dfrac{\left(3x+1\right)^2-\left(3x-1\right)^2}{\left(3x-1\right)\left(3x+1\right)}\cdot\dfrac{6x-2}{3}\)

\(=\dfrac{9x^2+6x+1-9x^2+6x-1}{3x+1}\cdot\dfrac{2}{3}\)

\(=\dfrac{12x}{3\left(3x+1\right)}=\dfrac{4x}{3x+1}\)

b: B>-2

=>B+2>0

=>\(\dfrac{4x+6x+2}{3x+1}>0\)

=>\(\dfrac{10x+2}{3x+1}>0\)

=>x>-1/3 hoặc x<-1/5

c: B=3

=>4x=3(3x+1)

=>9x+3=4x

=>5x=-3

=>x=-3/5

NV
10 tháng 3 2023

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)

Gọi biểu thức cần tìm GTNN là P, ta có:

\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)

\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)

\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)

22 tháng 3

Đặt \(a = \frac{1}{x} ; b = \frac{1}{y} ; c = \frac{1}{z} \Rightarrow x y z = 1\) và \(x ; y ; z > 0\)

Gọi biểu thức cần tìm GTNN là P, ta có:

\(P = \frac{1}{\frac{1}{x^{3}} \left(\right. \frac{1}{y} + \frac{1}{z} \left.\right)} + \frac{1}{\frac{1}{y^{3}} \left(\right. \frac{1}{z} + \frac{1}{x} \left.\right)} + \frac{1}{\frac{1}{z^{3}} \left(\right. \frac{1}{x} + \frac{1}{y} \left.\right)}\)

\(= \frac{x^{3} y z}{y + z} + \frac{y^{3} z x}{z + x} + \frac{z^{3} x y}{x + y} = \frac{x^{2}}{y + z} + \frac{y^{2}}{z + x} + \frac{z^{2}}{x + y}\)

\(P \geq \frac{\left(\left(\right. x + y + z \left.\right)\right)^{2}}{y + z + z + x + x + y} = \frac{x + y + z}{2} \geq \frac{3 \sqrt[3]{x y z}}{2} = \frac{3}{2}\)

\(P_{m i n} = \frac{3}{2}\) khi \(x = y = z = 1\) hay \(a = b = c = 1\)

a: Xét ΔBDE vuông tại E và ΔBCD vuông tại D có

\(\hat{DBE}\) chung

Do đó: ΔBDE~ΔBCD

b: Xét ΔBFD vuông tại F và ΔBDA vuông tại D có

\(\hat{FBD}\) chung

Do đó: ΔBFD~ΔBDA

=>\(\frac{BF}{BD}=\frac{BD}{BA}\)

=>\(BD^2=BF\cdot BA\)

c: ΔBDE~ΔBCD

=>\(\frac{BD}{BC}=\frac{BE}{BD}\)

=>\(BD^2=BE\cdot BC\)

=>\(BE\cdot BC=BF\cdot BA\)

=>\(\frac{BE}{BA}=\frac{BF}{BC}\)

Xét ΔBEF và ΔBAC có

\(\frac{BE}{BA}=\frac{BF}{BC}\)

góc EBF chung

Do đó: ΔBEF~ΔBAC

=>\(\hat{BFE}=\hat{BCA}\)


Gọi I là trung điểm của DE
=>I là tâm đường tròn đường kính DE

ĐƯờng trung trực của BC cắt BC,AC,AB lần lượt tại M,D,E

=>MB=MC; EB=EC; DB=DC

MB=MC nên M la trung điểm của BC

ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB

=>ΔMAB cân tại M

=>\(\hat{MAB}=\hat{MBA}\)

ΔAED vuông tại A

mà AI là đường trung tuyến

nên IA=IE

=>ΔIAE cân tại I

=>\(\hat{IAE}=\hat{IEA}\)

\(\hat{IEA}=\hat{MEB}\) (hai góc đối đỉnh)

nên \(\hat{IAE}=\hat{MEB}\)

Ta có: DM là đường trung trực của BC

=>DM⊥BC tại M

Xét tứ giác AEMC có \(\hat{CAE}+\hat{CME}+\hat{ACM}+\hat{AEM}=360^0\)

=>\(\hat{ACM}+\hat{AEM}=360^0-90^0-90^0=180^0\)

\(\hat{AEM}+\hat{BEM}=180^0\) (hai góc kề bù)

nên \(\hat{BEM}=\hat{ACB}\)

\(\hat{MAI}=\hat{MAE}+\hat{IAE}=\hat{MAB}+\hat{MEB}\)

\(=\hat{MBA}+\hat{MCA}=90^0\)

=>AM⊥IA tại A

ΔAED vuông tại A

mà AI là đường trung tuyến

nên IA=IE=ID

=>A nằm trên (I)

Xét (I) có

IA là bán kính

AM⊥ AI tại A

Do đó: AM là tiếp tuyến tại A của (I)

=>AM là tiếp tuyến của đường tròn đường kính DE

Bài 8:

\(\left(2n+3\right)^2-\left(2n-1\right)^2\)

\(=\left(2n+3+2n-1\right)\left(2n+3-2n+1\right)\)

\(=4\cdot\left(4n+2\right)=4\cdot2\cdot\left(2n+1\right)=8\left(2n+1\right)\) ⋮8

Bai 7:

\(B=x^2+y^2=\left(x+y\right)^2-2xy\)

\(=15^2-2\cdot\left(-100\right)=225+200=425\)

Bài 6:

\(B=\left(3x-1\right)^2-\left(x+7\right)^2-2\left(2x-5\right)\left(2x+5\right)\)

\(=9x^2-6x+1-\left(x^2+14x+49\right)-2\left(4x^2-25\right)\)

\(=9x^2-6x+1-x^2-14x-49-8x^2+50\)

=-20x+2

Khi x=1/5 thì \(B=-20\cdot\frac15+2=-4+2=-2\)

Bài 3:

a: \(x^2-10x+25=\left(x-5\right)^2\)

b: \(4-4x^2+x^4=\left(2-x^2\right)^2\)

c: \(x^2-6xy+9y^2=\left(x-3y\right)^2\)

d: \(\left(2x+y^2\right)\left(2x-y^2\right)=4x^2-y^4\)


Bài 6:

a: \(A=n^2\left(n-1\right)+2n\left(1-n\right)\)

\(=n^2\left(n-1\right)-2n\left(n-1\right)\)

\(=\left(n-1\right)\left(n^2-2n\right)=n\left(n-1\right)\left(n-2\right)\)

Vì n;n-1;n-2 là ba số nguyên liên tiếp

nên n(n-1)(n-2)⋮3!

=>n(n-1)(n-2)⋮6

=>A⋮6

b: \(M=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)

\(=\left(12x^2+12x-x-1\right)\left(12x^2+8x+3x+2\right)-4\)

\(=\left(12x^2+11x-1\right)\left(12x^2+11x+2\right)-4\)

\(=\left(12x^2+11x\right)^2+2\left(12x^2+11x\right)-\left(12x^2+11x\right)-2-4\)

\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-6\)

\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)

Bài 4:

a: \(A=x\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y\)

\(=\left(x-y\right)^2\cdot\left(x-y\right)+xy\left(y-x\right)\)

\(=\left(x-y\right)^3-xy\left(x-y\right)\)

Khi x-y=5 và xy=4 thì \(A=5^3-4\cdot5=125-20=105\)

b: \(B=65^2-35^2+83^2-17^2\)

\(=\left(65-35\right)\left(65+35\right)+\left(83-17\right)\left(83+17\right)\)

\(=100\cdot30+100\cdot66=100\cdot96=9600\)

Bài 3:

a: \(4x\cdot\left(x+3\right)-x-3=0\)

=>4x(x+3)-(x+3)=0

=>(x+3)(4x-1)=0

=>\(\left[\begin{array}{l}x+3=0\\ 4x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-3\\ x=\frac14\end{array}\right.\)

b: \(x^2+4x=0\)

=>x(x+4)=0

=>\(\left[\begin{array}{l}x=0\\ x+4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-4\end{array}\right.\)

c: \(9x^2-\left(2x-1\right)^2=0\)

=>\(\left(3x\right)^2-\left(2x-1\right)^2=0\)

=>(3x-2x+1)(3x+2x-1)=0

=>(x+1)(5x-1)=0

=>\(\left[\begin{array}{l}x+1=0\\ 5x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-1\\ x=\frac15\end{array}\right.\)

d: \(\left(x^3-1\right)-\left(x-1\right)\left(x^2-5\right)=0\)

=>\(\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-5\right)=0\)

=>\(\left(x-1\right)\left(x^2+x+1-x^2+5\right)=0\)

=>(x-1)(x+6)=0

=>\(\left[\begin{array}{l}x-1=0\\ x+6=0\end{array}\right.=>\left[\begin{array}{l}x=1\\ x=-6\end{array}\right.\)

nhìn lé cả con mắt mà ko nhìn đc chữ

16 tháng 8

ko nhìn đc gì luôn á

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

\({x^2} = {4^2} + {2^2} = 20 \Rightarrow x = 2\sqrt 5 \)

\({y^2} = {5^2} - {4^2} = 9 \Leftrightarrow y = 3\)

\({z^2} = {\left( {\sqrt 5 } \right)^2} + {\left( {2\sqrt 5 } \right)^2} = 25 \Rightarrow z = 5\)

\({t^2} = {1^2} + {2^2} = 5 \Rightarrow t = \sqrt 5 \)

a: ΔAEH vuông tại E

mà EO là đường trung tuyến

nên EO=OA=OH

=>E nằm trên (O)

ΔADH vuông tại D

mà DO là đường trung tuyến

nên DO=OE=OA

=>D nằm trên (O)

b: ΔDBC vuông tại D

mà DM là đường trung tuyến

nên DM=MB

=>ΔMBD cân tại M

=>\(\hat{MDB}=\hat{MBD}=\hat{DBC}\)

OD=OH nên ΔODH cân tại O

=>\(\hat{ODH}=\hat{OHD}\)

\(\hat{OHD}=\hat{AHD}=\hat{ACK}=\hat{DCB}\left(=90^0-\hat{HAC}\right)\)

nên \(\hat{ODH}=\hat{DCB}\)

\(\hat{ODM}=\hat{ODH}+\hat{MDH}\)

\(=\hat{DCB}+\hat{DBC}=90^0\)

=>OD⊥MD tại D

=>MD là tiếp tuyến tại D của (O)

16 tháng 8

cứu mik vs


a: Đặt 570=a; 375=b

\(A=4\frac{7}{570}\cdot\frac{1}{375}-\frac{4}{375}\cdot1\frac{2}{570}+\frac{1}{375}+\frac{1}{375\cdot570}\)

\(=4\frac{7}{a}\cdot\frac{1}{b}-\frac{4}{b}\cdot1\frac{2}{a}+\frac{1}{b}+\frac{1}{ab}\)

\(=\frac{4a+7}{a}\cdot\frac{1}{b}-\frac{4}{b}\cdot\frac{a+2}{a}+\frac{a}{ab}+\frac{1}{ab}=\frac{4a+7-4a-8+a+1}{ab}\)

\(=\frac{a}{ab}=\frac{1}{b}=\frac{1}{375}\)

b: Đặt 460=a; 300=b

\(B=3\frac{1}{460}\cdot4\frac{1}{300}-1\frac{459}{460}\cdot5\frac{299}{300}-\frac{5}{300}\)

\(=3\frac{1}{a}\cdot4\frac{1}{b}-1\frac{a-1}{a}\cdot5\frac{b-1}{b}-\frac{5}{b}\)

\(=\frac{3a+1}{a}\cdot\frac{4b+1}{b}-\frac{a+a-1}{a}\cdot\frac{5b+b-1}{b}-\frac{5}{b}\)

\(=\frac{\left(3a+1\right)\left(4b+1\right)-\left(2a-1\right)\left(6b-1\right)-5a}{ab}\)

\(=\frac{12ab+3a+4b+1-12ab+2a+6b-1-5a}{ab}=\frac{10b}{ab}=\frac{10}{a}\)

\(=\frac{10}{460}=\frac{1}{46}\)