K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(B=\dfrac{\left(3x+1\right)^2-\left(3x-1\right)^2}{\left(3x-1\right)\left(3x+1\right)}\cdot\dfrac{6x-2}{3}\)

\(=\dfrac{9x^2+6x+1-9x^2+6x-1}{3x+1}\cdot\dfrac{2}{3}\)

\(=\dfrac{12x}{3\left(3x+1\right)}=\dfrac{4x}{3x+1}\)

b: B>-2

=>B+2>0

=>\(\dfrac{4x+6x+2}{3x+1}>0\)

=>\(\dfrac{10x+2}{3x+1}>0\)

=>x>-1/3 hoặc x<-1/5

c: B=3

=>4x=3(3x+1)

=>9x+3=4x

=>5x=-3

=>x=-3/5

17 tháng 9 2021

\(A=3\left(x+y\right)+x^2+6xy+9y^2-100\)

\(=3\left(x+y\right)+\left(x^2+2.x.3y+\left(3y\right)^2\right)-100\)

\(=3\left(x+y\right)+\left(x+3y\right)^2-100\)

30 tháng 8 2021

 

 

 

30 tháng 8 2021

c) ta có EF là dg tb tg ABC(cmt)

=> EF//BC <=> ED//BC( D thuộc EF)     (1)

Ta lại có AECD là hbh ( cmt)

=> AE//CD <=> EB//CD( E thuộc AB)      (2)

Từ (1) và (2) => EBCD là hbh( dh1 )

=> EC giao BD tại trung điểm mỗi dg

<=> N td BD; G td EC hay EG=GC

 

 

11 tháng 8 2020

a) 

<=> \(3x-12x^2+12x^2-6x=9\)

<=> \(-3x=9\)

<=> \(x=-3\)

b)

<=> \(6x-24x^2-12x+24x^2=6\)

<=> \(-6x=6\)

<=> \(x=-1\)

c) 

<=> \(6x-4-3x+6=1\)

<=> \(3x+2=1\)

<=> \(x=-\frac{1}{3}\)

d) 

<=> \(9-6x^2+6x^2-3x=9\)

<=> \(-3x=0\)

<=> \(x=0\)

e) KO HIỂU ĐỀ

f) 

<=> \(4x^2-8x+3-\left(4x^2+9x+2\right)=8\)

<=> \(-17x+1=8\)

<=> \(x=-\frac{7}{17}\)

g) 

<=> \(-6x^2+x+1+6x^2-3x=9\)

<=> \(-2x=8\)

<=> \(x=-4\)

h)

<=> \(x^2-x+2x^2+5x-3=4\)

<=> \(3x^2+4x=7\)

<=> \(\orbr{\begin{cases}x=1\\x=-\frac{7}{3}\end{cases}}\)

11 tháng 8 2020

a. \(3x\left(1-4x\right)+6x\left(2x-1\right)=9\)

\(\Rightarrow3x-12x^2+12x^2-6x=9\)

\(\Rightarrow-3x=9\)

\(\Rightarrow x=-3\)

b. \(3x\left(2-8x\right)-12x\left(1-2x\right)=6\)

\(\Rightarrow6x-24x^2-12x+24x^2=6\)

\(\Rightarrow-6x=6\)

\(\Rightarrow x=-1\)

c. \(2\left(3x-2\right)-3\left(x-2\right)=1\)

\(\Rightarrow6x-4-3x+6=1\)

\(\Rightarrow3x+2=1\)

\(\Rightarrow3x=-1\)

\(\Rightarrow x=-\frac{1}{3}\)

7 tháng 1

c) Để hàm số cắt trục tung tại điểm có tung độ âm thì:

m - 5 < 0

m < 0+ 5

m < 5 (nhận)

Vậy m < 5 và m ≠ 1 thì đồ thị của hàm số cắt trục tung tại điểm có tung độ âm

b: =>(x+1)(x-1)-(x+3)(x-3)=2x^2+6x

=>2x^2+6x=x^2-1-x^2+9=8

=>2x^2+6x-8=0

=>x^2+3x-4=0

=>(x+4)(x-1)=0

=>x=-4 hoặc x=1(loại)

a: =>x^3+2x-2x(x^2+1)=0

=>x^3+2x-2x^3-2x=0

=>-x^3=0

=>x=0(nhận)

c: =>(x-2)(x+2)-(x+5)^2=x^2-8

=>x^2-4-x^2-10x-25=x^2-8

=>x^2-8=-10x-29

=>x^2+10x+21=0

=>(x+3)(x+7)=0

=>x=-3 hoặc x=-7

30 tháng 10 2021

b) Bạn đã chứng minh được tứ giác EKFC là hình bình hành ở câu a, mà EF cắt CK tại I \(\Rightarrow\)I là trung điểm EF (tính chất hình bình hành)

\(\Rightarrow AI\)là trung tuyến của \(\Delta AEF\)

Mà \(\Delta AEF\)vuông tại A \(\Rightarrow AI=\frac{1}{2}EF\)(tính chất tam giác vuông)

Lại có \(EI=\frac{1}{2}EF\)do I là trung điểm của đoạn EF \(\Rightarrow AI=EI\left(=\frac{1}{2}EF\right)\)

Mặt khác \(BE\perp AF\)\(MI\perp AF\left(gt\right)\)\(\Rightarrow BE//MI\)(quan hệ từ vuông góc đến song song)

Mà tứ giác BEFD là hình bình hành \(\Rightarrow BD//EF\)(tính chất hình bình hành)

\(\Rightarrow BM//EI\)(vì \(M\in BD;I\in EF\))

Xét tứ giác BEIM có \(BE//MI\left(cmt\right);BM//EI\left(cmt\right)\)\(\Rightarrow\)Tứ giác BEIM là hình bình hành (định nghĩa)

\(\Rightarrow BM=EI\)(tính chất hình bình hành)

Mà \(AI=EI\left(cmt\right)\)\(\Rightarrow AI=BM\left(=EI\right)\left(đpcm\right)\)

c) Do tứ giác BEFD là hình bình hành \(\Rightarrow\hept{\begin{cases}BE//DF\\BE=DF\end{cases}}\)(tính chất hình bình hành)

Mà \(\hept{\begin{cases}BE\perp CF\\BE=CF\end{cases}}\left(gt\right)\Rightarrow\hept{\begin{cases}DF\perp CFtạiF\\DF=CF\end{cases}}\)\(\Rightarrow\)F nằm trên đường trung trực của đoạn CD và \(\Delta CDF\)vuông cân tại F

\(\Rightarrow\widehat{DCF}=45^0\)

\(\Delta ABC\)vuông cân tại A (gt) \(\Rightarrow\widehat{ACB}=45^0\)

 \(\Rightarrow\widehat{BCD}=180^0-\widehat{ACB}-\widehat{DCF}=180^0-45^0-45^0=90^0\)

\(\Rightarrow\Delta BCD\)vuông tại C.

Xét hình thang BEFD (BE//DF) ta có I là trung điểm EF (cmt) và IM//BE (cmt) \(\Rightarrow\)M là trung điểm của đoạn BD

\(\Rightarrow\)CM là trung tuyến của \(\Delta BCD\)

Mặt khác \(\Delta BCD\)vuông tại C \(\Rightarrow CM=\frac{1}{2}BD\)(tính chát tam giác vuông)

Mà \(DM=\frac{1}{2}BD\)do M là trung điểm BD \(\Rightarrow DM=CM\left(=\frac{1}{2}BD\right)\)

\(\Rightarrow\)M nằm trên đường trung trực của đoạn CD.

Mà F cũng nằm trên đường trung trực của đoạn CD (cmt)

\(\Rightarrow\)MF là đường trung trực của đoạn CD \(\Rightarrow\)C đối xứng với D qua MF (đpcm)

23 tháng 10 2021

Câu 11:

Ta có: \(\left(2x-3\right)\left(3x+2\right)-\left(2x-3\right)^2=-18\)

\(\Leftrightarrow6x^2+4x-9x-6-4x^2+12x-9=-18\)

\(\Leftrightarrow2x^2+7x+3=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

10 tháng 12 2023

a: Xét tứ giác ABQN có

\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)

=>ABQN là hình chữ nhật

b: Xét ΔCAD có

DN,CH là các đường cao

DN cắt CH tại M

Do đó: M là trực tâm của ΔCAD

=>AM\(\perp\)CD

c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔHAB đồng dạng với ΔHCA

=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

=>\(HA=\sqrt{HB\cdot HC}\)

 

10 tháng 12 2023

loading...