\(\lim\limits_{\rightarrow}\left(\dfrac{1}{1.3}+\dfrac{1}{2.4}+...+\dfrac{1}{n\left(n+2\right)}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2021

\(lim\left(\dfrac{1}{1.3}+\dfrac{1}{2.4}+...+\dfrac{1}{n\left(n+2\right)}\right)\)

\(=lim\left[\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\right)+\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{n\left(n+2\right)}\right)\right]\)

\(=lim\left(\dfrac{1}{2}\left(1-\dfrac{1}{n+1}+\dfrac{1}{2}-\dfrac{1}{n+2}\right)\right)\)

\(=lim\left(\dfrac{1}{2}.\left(\dfrac{3}{2}-\dfrac{2n+3}{n^2+3n+2}\right)\right)\)

\(=\dfrac{3}{4}\)

AH
Akai Haruma
Giáo viên
14 tháng 5 2021

1.

\(\lim\limits_{x\to (-1)-}\frac{\sqrt{x^2-3x-4}}{1-x^2}=\lim\limits_{x\to (-1)-}\frac{\sqrt{(x+1)(x-4)}}{(1-x)(1+x)}\)

\(=\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{(x-1)\sqrt{-(x+1)}}=-\infty\) do:

\(\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{x-1}=\frac{-\sqrt{5}}{2}<0\) và \(\lim\limits_{x\to (-1)-}\frac{1}{\sqrt{-(x+1)}}=+\infty\)

 

AH
Akai Haruma
Giáo viên
14 tháng 5 2021

2.

\(\lim\limits_{x\to 2+}\left(\frac{1}{x-2}-\frac{x+1}{\sqrt{x+2}-2}\right)=\lim\limits_{x\to 2+}\frac{1-(x+1)(\sqrt{x+2}+2)}{x-2}=-\infty\) do:

\(\lim\limits_{x\to 2+}\frac{1}{x-2}=+\infty\) và \(\lim\limits_{x\to 2+}[1-(x+1)(\sqrt{x+2}+2)]=-11<0\)

 

4 tháng 4 2017

a) (x4 – x2 + x - 1) = x4(1 - ) = +∞.

b) (-2x3 + 3x2 -5 ) = x3(-2 + ) = +∞.

c) = = +∞.

d) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}+x}{5-2x}=\lim\limits_{x\rightarrow+\infty}\dfrac{\left|x\right|\sqrt{1+\dfrac{1}{x^2}}+x}{5-2x}\)
 \(=\lim\limits_{x\rightarrow+\infty}\dfrac{x\sqrt{1+\dfrac{1}{x^2}}+x}{5-2x}\)\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{x^2}}+1}{\dfrac{5}{x}-2}=-1\).

 

28 tháng 4 2017

Tôi chẳng thể hiểu nổi