Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề là tìm Max nhé m.n
Ta có:
\(\frac{ab+bc+ca+6\left(a+b+c\right)+27}{\left(a+3\right)\left(b+3\right)\left(c+3\right)}=\frac{3}{5}\)
\(\Leftrightarrow\frac{\left(b+3\right)\left(c+3\right)+\left(c+3\right)\left(a+3\right)+\left(a+3\right)\left(b+3\right)}{\left(a+3\right)\left(b+3\right)\left(c+3\right)}=\frac{3}{5}\)
\(\Leftrightarrow\frac{5}{a+3}+\frac{5}{b+3}+\frac{5}{c+3}=3\Leftrightarrow\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}=0\)
Xét biểu thức:
\(\frac{a^2-4}{a^2-9}=\frac{\left(a-2\right)\left(a+2\right)}{\left(a-3\right)\left(a+3\right)}=\frac{a-2}{a+3}.\frac{a+2}{a-3}\)
tưởng tự:
\(\frac{b^2-4}{b^2-9}=\frac{b-2}{b+3}.\frac{b+2}{b-3},\frac{c^2-4}{c^2-9}=\frac{c-2}{c+3}.\frac{c+2}{c-3}\)
\(\Rightarrow\frac{a^2-4}{a^2-9}+\frac{b^2-4}{b^2-9}+\frac{c^2-4}{c^2-9}=\frac{a-2}{a+3}.\frac{a+2}{a-3}+\frac{b-2}{b+3}.\frac{b+2}{b-3}+\frac{c-2}{c+3}.\frac{c+2}{c-3}\)
Do vai trò của a và b và c như nhau nên ta giả sử
\(a\ge b\ge c\)
Khi đó ta có:
\(\frac{a-2}{a+3}\ge\frac{b-2}{b+3}\ge\frac{c-2}{c+3},\frac{a+2}{a-3}\le\frac{b+2}{b-3}\le\frac{c+2}{c-3}\)
Áp dụng bất đẳng thức chebyshev cho 2 bộ ngược chiều trên ta có
\(\frac{a-2}{a+3}.\frac{a+3}{a-2}+\frac{b-2}{b+3}.\frac{b+2}{b-3}+\frac{c-2}{c+3}.\frac{c+2}{c-3}\le\left(\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}\right).\left(\frac{a+2}{a-3}+\frac{b+2}{b-3}+\frac{c+2}{c-3}\right)\)
Mà \(\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}=0\)
\(\Rightarrow\frac{a^2-4}{a^2-9}+\frac{b^2-4}{b^2-9}+\frac{c^2-4}{c^2-9}\le0\)
\(\Rightarrow\frac{5}{a^2-9}+\frac{5}{b^2-9}+\frac{5}{c^2-9}\le-3\Rightarrow\frac{1}{a^2-9}+\frac{1}{b^2-9}+\frac{1}{c^2-9}\le\frac{-3}{5}\)
Dấu bằng xảy ra khi a=b=c=2
Ta có: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Rightarrow\frac{a^3+b^3+c^3}{4abc}=\frac{3}{4}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{4abc}\)
\(=\frac{3}{4}+\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\ge\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{3}{2}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\ge\frac{9}{ab+ac+bc}\right)\)
\(\Rightarrow\frac{a^3+b^3+c^3}{4abc}\ge\frac{9}{4}\left(\frac{a^2+b^2+c^2}{ab+bc+ac}\right)-\frac{3}{2}\left(1\right)\)
Lại có:\(\frac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2+2\left(ab+bc+ac\right)}{30\left(a^2+b^2+c^2\right)}\)
\(=\frac{1}{30}+\frac{1}{15}\left(\frac{ab+bc+ca}{a^2+b^2+c^2}\right)\left(2\right)\).Từ (1);(2) có:
\(P=\frac{1}{30}-\frac{3}{2}+\frac{1}{5}\left(\frac{ab+bc+ca}{a^2+b^2+c^2}\right)+\frac{9}{4}\left(\frac{a^2+b^2+c^2}{ab+bc+ca}\right)-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
\(=\frac{1}{15}\left(\frac{a^2+b^2+c^2}{ab+bc+ac}+\frac{ab+bc+ca}{a^2+b^2+c^2}-22\right)\ge-\frac{4}{3}\)
đề thi hsg toán lớp 9 tỉnh thanh hóa năm 2016-2017 mà
2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).
Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Đẳng thức xảy ra khi a = b; c = 0.
Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)
BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)
Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)
Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)
Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)
\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):
\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)
\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)
\(\ge2\left(xy+yz+zx\right)\)
Vậy (1) đúng. BĐT đã được chứng minh.
Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.
Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(
Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:
Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)
khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)
Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)
Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$
\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)
\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)
Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)
Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\); \(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)
Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)
\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*
\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)
\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)
Đẳng thức xảy ra khi a = b = c
P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:
1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)
\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)
bài 2 xem có ghi nhầm ko
Bài 2:b) \(9=\left(\frac{1}{a^3}+1+1\right)+\left(\frac{1}{b^3}+1+1\right)+\left(\frac{1}{c^3}+1+1\right)\)
\(\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\therefore\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
Ta sẽ chứng minh \(P\le\frac{1}{48}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Ai có cách hay?
1/Đặt a=1/x,b=1/y,c=1/z ->x+y+z=1.
2a) \(VT=\frac{\left(\frac{1}{a^3}+\frac{1}{b^3}\right)\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{1}{a}+\frac{1}{b}}\ge\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2}{\frac{1}{a}+\frac{1}{b}}\)
\(=\frac{\left[\frac{\left(a^2+b^2\right)^2}{a^4b^4}\right]}{\frac{a+b}{ab}}=\frac{\left(a^2+b^2\right)^2}{a^3b^3\left(a+b\right)}\ge\frac{\left(a+b\right)^3}{4\left(ab\right)^3}\)
\(\ge\frac{\left(a+b\right)^3}{4\left[\frac{\left(a+b\right)^2}{4}\right]^3}=\frac{16}{\left(a+b\right)^3}\)
Ta có: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Rightarrow\frac{a^3+b^3+c^3}{4abc}=\frac{3}{4}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{4abc}\)
\(=\frac{3}{4}+\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\ge\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{3}{2}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\ge\frac{9}{ab+ac+bc}\right)\)
\(\Rightarrow\frac{a^3+b^3+c^3}{4abc}\ge\frac{9}{4}\left(\frac{a^2+b^2+c^2}{ab+bc+ac}\right)-\frac{3}{2}\left(1\right)\)
Lại có: \(\frac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2+2\left(ab+bc+ac\right)}{30\left(a^2+b^2+c^2\right)}\)
\(=\frac{1}{30}+\frac{1}{15}\left(\frac{ab+bc+ca}{a^2+b^2+c^2}\right)\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)\(\Rightarrow P=\frac{1}{30}-\frac{3}{2}+\frac{1}{5}\left(\frac{ab+bc+ca}{a^2+b^2+c^2}\right)+\frac{9}{4}\left(\frac{a^2+b^2+c^2}{ab+bc+ca}\right)-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
\(=\frac{1}{15}\left(\frac{a^2+b^2+c^2}{ab+bc+ac}+\frac{ab+bc+ca}{a^2+b^2+c^2}-22\right)\ge-\frac{4}{3}\)
Bài 3)
BĐT cần chứng minh tương đương với:
\(\left ( \frac{a}{a+b} \right )^2+\left ( \frac{b}{b+c} \right )^2+\left ( \frac{c}{c+a} \right )^2\geq \frac{1}{2}\left ( 3-\frac{a}{a+b}-\frac{b}{b+c}-\frac{c}{c+a} \right )\)
Để cho gọn, đặt \((x,y,z)=\left (\frac{b}{a},\frac{c}{b},\frac{a}{c}\right)\) \(\Rightarrow xyz=1\).
BĐT được viết lại như sau:
\(A=2\left [ \frac{1}{(x+1)^2}+\frac{1}{(y+1)^2}+\frac{1}{(z+1)^2} \right ]+\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\) \((\star)\)
Ta nhớ đến hai bổ đề khá quen thuộc sau:
Bổ đề 1: Với \(a,b>0\) thì \(\frac{1}{(a+1)^2}+\frac{1}{(b+1)^2}\geq \frac{1}{ab+1}\)
Cách CM rất đơn giản, Cauchy - Schwarz:
\((a+1)^2\leq (a+b)(a+\frac{1}{b})\Rightarrow \frac{1}{(a+1)^2}\geq \frac{b}{(a+b)(ab+1)}\)
Tương tự với biểu thức còn lại và cộng vào thu được đpcm
Bổ đề 2: Với \(x,y>0,xy\geq 1\) thì \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}\)
Cách CM: Quy đồng ta có đpcm.
Do tính hoán vị nên không mất tổng quát giả sử \(z=\min (x,y,z)\)
\(\Rightarrow xy\geq 1\). Áp dụng hai bổ đề trên:
\(A\geq 2\left [ \frac{1}{xy+1}+\frac{1}{(z+1)^2} \right ]+\frac{2}{\sqrt{xy}+1}+\frac{1}{z+1}=2\left [ \frac{z}{z+1}+\frac{1}{(z+1)^2} \right ]+\frac{2\sqrt{z}}{\sqrt{z}+1}+\frac{1}{z+1}\)
\(\Leftrightarrow A\geq \frac{2(z^2+z+1)}{(z+1)^2}+\frac{1}{z+1}+2-\frac{2}{\sqrt{z}+1}\geq 3\)
\(\Leftrightarrow 2\left [ \frac{z^2+z+1}{(z+1)^2}-\frac{3}{4} \right ]+\frac{1}{z+1}-\frac{1}{2}-\left ( \frac{2}{\sqrt{z}+1}-1 \right )\geq 0\)
\(\Leftrightarrow \frac{(z-1)^2}{2(z+1)^2}-\frac{z-1}{2(z+1)}+\frac{z-1}{(\sqrt{z}+1)^2}\geq 0\Leftrightarrow (z-1)\left [ \frac{1}{(\sqrt{z}+1)^2}-\frac{1}{(z+1)^2} \right ]\geq 0\)
\(\Leftrightarrow \frac{\sqrt{z}(\sqrt{z}-1)^2(\sqrt{z}+1)(z+\sqrt{z}+2)}{(\sqrt{z}+1)^2(z+1)^2}\geq 0\) ( luôn đúng với mọi \(z>0\) )
Do đó \((\star)\) được cm. Bài toán hoàn tất.
Dấu bằng xảy ra khi \(a=b=c\)
P/s: Nghỉ tuyển lâu rồi giờ mới gặp mấy bài BĐT phải động não. Khuya rồi nên xin phép làm bài 3 trước. Hai bài kia xin khiếu. Nếu làm đc chắc tối mai sẽ post.
Bài 1:
Cho \(a=b=c=\dfrac{1}{\sqrt{3}}\). Khi đó \(M=\sqrt{3}-2\)
Ta sẽ chứng minh nó là giá trị nhỏ nhất
Thật vậy, đặt c là giá trị nhỏ nhất của a,b,c. Khi đó, ta cần chứng minh
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\frac{2(a^2+b^2+c^2)}{\sqrt{ab+ac+bc}}\geq(\sqrt3-2)\sqrt{ab+ac+bc}\)
\(\Leftrightarrow\sqrt{ab+ac+bc}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\sqrt{3(ab+ac+bc)}\right)\geq2(a^2+b^2+c^2-ab-ac-bc)\)
\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{a}-a-b+\frac{b^2}{c}+\frac{c^2}{a}-\frac{b^2}{a}-c+a+b+c-\sqrt{3(ab+ac+bc)}\geq\)
\(\geq2((a-b)^2+(c-a)(c-b))\)
\(\Leftrightarrow(a-b)^2\left(\frac{1}{a}+\frac{1}{b}-2\right)+(c-a)(c-b)\left(\frac{1}{a}+\frac{b}{ac}-2\right)+a+b+c-\sqrt{3(ab+ac+bc)}\geq0\)
Đúng bởi \(\frac{1}{a}+\frac{1}{b}-2>0;\frac{1}{a}+\frac{b}{ac}-2\geq\frac{1}{a}+\frac{1}{a}-2>0\) và
\(a+b+c-\sqrt{3(ab+ac+bc)}=\frac{(a-b)^2+(c-a)(c-b)}{a+b+c+\sqrt{3(ab+ac+bc)}}\geq0\)
BĐT đã được c/m. Vậy \(M_{Min}=\sqrt{3}-2\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)
P/s: Nhìn qua thấy ngon mà làm mới thấy thật sự là "choáng"
sos là ra
Nhưng trước hết làm cho nó đẹp lại cái đã:v Bài toán gì đâu mà cho toàn phân thức xấu xí, lần sau bảo người ra đề chọn hệ số đẹp hơn nha zZz Cool Kid zZz :DD
\(P=\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{30\left(a^2+b^2+c^2\right)}+\left(\frac{\left(a^3+b^3+c^3\right)}{4abc}-\frac{3}{4}\right)+\frac{3}{4}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
\(=\frac{47}{60}+\frac{\left(ab+bc+ca\right)}{15\left(a^2+b^2+c^2\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{4abc}\)
\(=\frac{47}{60}+\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{\frac{4}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}\)
\(=\frac{47}{60}+\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}+\frac{9\left(a^2+b^2+c^2-ab-bc-ca\right)}{4\left(ab+bc+ca\right)}\)
\(=\frac{47}{60}+\frac{1\left(a^2+b^2+c^2\right)}{15\left(ab+bc+ca\right)}-\frac{131\left(ab+bc+ca\right)}{60\left(a^2+b^2+c^2\right)}\)
Đặt \(x=\frac{a^2+b^2+c^2}{ab+bc+ca}\Rightarrow x\ge1\). Ta cần tìm min:
\(P=f\left(x\right)=\frac{47}{60}+\frac{1}{15}x-\frac{131}{60x}\)
\(=\frac{47}{60}+\frac{1}{15}x+\frac{1}{15x}-\frac{9}{4x}\)
\(\ge\frac{47}{60}+\frac{2}{15}-\frac{9}{4}=-\frac{4}{3}\)
Đẳng thức xảy ra khi \(a=b=c\)
P/s: Tính dùng sos nhưng nghĩ lại ko nên lạm dụng nên dùng cách khác:))