Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
1/ \(x^3+2=3\sqrt[3]{3x-2}\)
Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ
\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)
Lấy trên - dưới ta được
\(x^3-a^3+3x-3a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)
\(\Leftrightarrow x=a\)
\(\Leftrightarrow x=\sqrt[3]{3x-2}\)
\(\Leftrightarrow x^3-3x+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}+1\right)^2}=2\Leftrightarrow\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}=3\Leftrightarrow\sqrt{x}-2=3\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\)
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}=\sqrt{x-1}-1=2\)
\(\Leftrightarrow x=10\)
ĐKXĐ tự tìm\(b,\sqrt{x-4\sqrt{x}+4}=3\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}=3\)
\(\Leftrightarrow\sqrt{x}-2=3\)
\(\Leftrightarrow\sqrt{x}=5\)
\(\Rightarrow x=5^2=25\)
ĐK \(x\ge-\frac{1}{2}\)
Đặt như trên... (\(a\ge\sqrt{\frac{1}{2}};b\ge0\)) ta có hệ:
\(\hept{\begin{cases}2a^2b=a+b^3\\2a^2-b^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(b^2+1\right)b=a+b^3\\2a^2=b^2+1\end{cases}}\)
Xét pt trình đầu của hệ \(\Leftrightarrow a=b\). Thay b bởi a ở pt dưới ta được:
\(2a^2-a^2-1=0\Leftrightarrow\orbr{\begin{cases}a=1\left(TM\right)\\a=-\frac{1}{2}\left(KTM\right)\end{cases}}\). Với a = 1 thì ta có:
\(\sqrt{1+x}=1\Leftrightarrow x=0\) (TM)
Vậy...
Nhân 2 vế của giả thiết với \(abc\) ta có: \(ab+bc+ca=abc\)
Ta có: \(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{3a}{4}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b^2}{b+ca}+\frac{b+c}{8}+\frac{b+a}{8}\ge\frac{3b}{4};\frac{c^2}{c+ab}+\frac{c+a}{8}+\frac{c+b}{8}\ge\frac{3c}{4}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT+\frac{4a+4b+4c}{8}\ge\frac{3a+3b+3c}{4}\)
\(\Leftrightarrow VT+\frac{2a+2b+2c}{4}\ge\frac{3a+3b+3c}{4}\Leftrightarrow VT\ge VP\)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
\(\Rightarrow ab+bc+ca=abc\)
\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)
\(VT=\frac{a^3}{a^2+ab+bc+ca}+\frac{b^3}{b^2+ab+bc+ca}+\frac{c^3}{c^2+ab+bc+ca}\)
\(VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+c\right)\left(a+b\right)}+\frac{c^3}{\left(a+c\right)\left(b+c\right)}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\\\frac{b^3}{\left(b+c\right)\left(a+b\right)}+\frac{b+c}{8}+\frac{a+b}{8}\ge3\sqrt[3]{\frac{b^3}{64}}=\frac{3b}{4}\\\frac{c^3}{\left(a+c\right)\left(b+c\right)}+\frac{a+c}{8}+\frac{b+c}{8}\ge3\sqrt[3]{\frac{c^3}{64}}=\frac{3c}{4}\end{cases}}\)
\(\Rightarrow\)\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+c\right)\left(a+b\right)}+\frac{c^3}{\left(a+c\right)\left(b+c\right)}+\frac{a+b+c}{2}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+c\right)\left(a+b\right)}+\frac{c^3}{\left(a+c\right)\left(b+c\right)}\ge\frac{a+b+c}{4}\)
\(\Leftrightarrow\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\left(đpcm\right)\)
tự mời nha
tự mời đê,hết lượt rồi thì bảo