\(3x^2+x=4y^2+y\) . Prove that x-y is a perfec...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

Mọi người giải ra giúp ạ, cảm ơn nhiều!

NV
22 tháng 7 2020

\(x\ne\pm3\)

\(P=\frac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{11x-3}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{x^2+x-6}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x+3\right)\left(x-2\right)}{\left(x+3\right)\left(x-3\right)}\)

\(=\frac{x-2}{x-3}=1+\frac{1}{x-3}\)

P is an integer if and only if 1 is divisible by \(x-3\)

Therefore \(x-3=\left\{-1;1\right\}\Rightarrow x=\left\{2;4\right\}\)

\(\Rightarrow x_{min}=2\)

20 tháng 12 2016

Ta có:

\(\hept{\begin{cases}ab=q\\a+b=p\end{cases}}\)và \(\hept{\begin{cases}cd=s\\c+d=r\end{cases}}\)

\(M=\frac{2\left(abc+bcd+cda+dab\right)}{p^2+q^2+r^2+s^2}=\frac{2\left(qc+sb+sa+qd\right)}{p^2+q^2+r^2+s^2}\)

\(=\frac{2\left(qr+sp\right)}{p^2+q^2+r^2+s^2}\le\frac{2\left(qr+sp\right)}{2\left(qr+sp\right)}=1\)

Với M = 1 thì \(\hept{\begin{cases}q=r\\p=s\end{cases}}\)

Tới đây thì không biết đi sao nữa :D

20 tháng 12 2016

thôi bỏ bài này đi cũng được vì chưa tới lúc cần dung phương trình

19 tháng 3 2017

?????????????????????????????????????????????? Are you learning English or Math? I'm sure you are're mistake of English

19 tháng 3 2017

:v

9 tháng 6 2018

We have:\(\hept{\begin{cases}a^2+b^2+c^2=\frac{1}{3}\\a,b,c>0\end{cases}\Rightarrow0< a,b,c< \frac{1}{\sqrt{3}}}\)

We prove to:

\(4x+\frac{2}{3x}\ge-3x^2+\frac{11}{3}\)  with  \(0< x< \frac{1}{\sqrt{3}}\)

\(\Leftrightarrow4x+\frac{2}{3x}+3x^2-\frac{11}{3}\ge0\)

\(\Leftrightarrow9x^3+12x^2-11x+2\ge0\)

\(\Leftrightarrow\left(3x+1\right)^2\left(x+2\right)\ge0\)   Always true to all \(0< x< \frac{1}{\sqrt{3}}\) 

\(\Rightarrow VT\ge-3a^2+\frac{11}{3}-3b^2+\frac{11}{3}-3c^2+\frac{11}{3}\)

\(=-3\left(a^2+b^2+c^2\right)+11=-3.\frac{1}{3}+11=10\) \(\left(đpcm\right)\)

9 tháng 6 2018

Đặt biểu thức trên là \(A\)

Ta có : \(A=\left(4a+\frac{2}{3a}\right)+\left(4b+\frac{2}{3b}\right)+\left(4c+\frac{2}{3c}\right)\)

Cần chứng minh \(4a+\frac{2}{3a}\ge-3a^2+\frac{11}{3}\) (*)

Thật vậy \(BĐT\Leftrightarrow4a+\frac{2}{3a}+3a^2-\frac{11}{3}\ge0\)

\(\Leftrightarrow\frac{12a^2+2+9a^3-11a}{3a}\ge0\Leftrightarrow\frac{\left(a+2\right)\left(3a-1\right)^2}{3a}\ge0\) (luôn đúng)

Tương tự : \(4b+\frac{2}{3b}\ge-3b^2+\frac{11}{3}\)   và \(4c+\frac{2}{3c}\ge-3c^2+\frac{11}{3}\)

Cộng các bất dẳng thức vừa CM đc ta có :

\(A\ge-3\left(a^2+b^2+c^2\right)+\frac{11}{3}.3=-3.\frac{1}{3}+11=10\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

3 tháng 2 2017

bài 1 là 3

3 tháng 2 2017

làm như thế nào vậy ạ

1.  Two bisector BD and CE of the triangle ABC intersect at O. Suppose that BD.CE = 2BO.OC . Denote by H the point in BC such that .\(OH⊥BC\) . Prove that AB.AC = 2HB.HC 2. Given a trapezoid ABCD with the based edges BC=3cm , DA=6cm ( AD//BC ). Then the length of the line EF ( \(E\in AB,F\in CD\) and EF // AD ) through the intersection point M of AC and BD is ............... ? 3. Let ABC be an equilateral triangle and a point M inside the triangle such that \(MA^2=MB^2+MC^2\) . Draw...
Đọc tiếp

1.  Two bisector BD and CE of the triangle ABC intersect at O. Suppose that BD.CE = 2BO.OC . Denote by H the point in BC such that .\(OH⊥BC\) . Prove that AB.AC = 2HB.HC

 

2. Given a trapezoid ABCD with the based edges BC=3cm , DA=6cm ( AD//BC ). Then the length of the line EF ( \(E\in AB,F\in CD\) and EF // AD ) through the intersection point M of AC and BD is ............... ?

 

3. Let ABC be an equilateral triangle and a point M inside the triangle such that \(MA^2=MB^2+MC^2\) . Draw an equilateral triangle ACD where \(D\ne B\) . Let the point N inside \(\Delta ACD\) such that AMN is an equilateral triangle. Determine \(\widehat{BMC}\) ?

 

4. Given an isosceles triangle ABC at A. Draw ray Cx being perpendicular to CA, BE perpendicular to Cx \(\left(E\in Cx\right)\) . Let M be the midpoint of BE, and D be the intersection point of AM and Cx. Prove that \(BD⊥BC\)

 

0