K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2021

Đặt \(x=\frac{2a}{b+c};y=\frac{2b}{c+a};z=\frac{2c}{a+b}\) Thì bài toán thành chứng minh

\(3\left(\sqrt{\frac{a+b}{2c}}+\sqrt{\frac{b+c}{2a}}+\sqrt{\frac{c+a}{2b}}\right)^2\ge\frac{8\left(a+b+c\right)^3}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Áp dụng holder ta có:

\(\left(\sqrt{\frac{a+b}{2c}}+\sqrt{\frac{b+c}{2a}}+\sqrt{\frac{c+a}{2b}}\right)^2\left(2c\left(a+b\right)^2+2a\left(b+c\right)^2+2b\left(c+a\right)^2\right)\)

\(\ge\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^3=8\left(a+b+c\right)^3\)

\(\Rightarrow VT\ge3.\frac{8\left(a+b+c\right)^3}{2a\left(b+c\right)^2+2b\left(c+a\right)^2+2c\left(a+b\right)^2}\)

Từ đây ta cần chứng minh:

\(3.\frac{8\left(a+b+c\right)^3}{2a\left(b+c\right)^2+2b\left(c+a\right)^2+2c\left(a+b\right)^2}\ge\frac{8\left(a+b+c\right)^3}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\Leftrightarrow2a\left(b+c\right)^2+2b\left(c+a\right)^2+2c\left(a+b\right)^2\le3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\)( đúng )

Vậy có ĐPCM

26 tháng 8 2017

KON 'NICHIWA ON" NANOKO: chào cô

18 tháng 1 2017

pt 1) x=y=z  Cosi 3 số 

20 tháng 10 2020

1111111111111111111

\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)

Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)

Là xong.

13 tháng 7 2019

A

Áp dụng BĐT cosi ta có 

\(\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)

\(x\sqrt{5-4x^2}\le\frac{x^2+5-4x^2}{2}=\frac{-3x^2+5}{2}\)

Khi đó 

\(A\le3x+\frac{-3x^2+5}{2}=\frac{-3x^2+6x+5}{2}=\frac{-3\left(x-1\right)^2}{2}+4\le4\)

MaxA=4 khi \(\hept{\begin{cases}2x-1=1\\x^2=5-4x^2\\x=1\end{cases}\Rightarrow}x=1\)

13 tháng 7 2019

B

Áp dụng BĐT cosi ta có :

\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)

=> \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)

=> \(B\le\frac{xyz.\left(\sqrt{3\left(x^2+y^2+z^2\right)}+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+xz\right)}=\frac{xyz.\left(\sqrt{3}+1\right)}{\left(xy+yz+xz\right)\sqrt{x^2+y^2+z^2}}\)

Lại có \(x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\)\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\)

=> \(\sqrt{x^2+y^2+z^2}\left(xy+yz+xz\right)\ge3\sqrt[3]{x^2y^2z^2}.\sqrt{3\sqrt[3]{x^2y^2z^2}}=3\sqrt{3}.xyz\)

=> \(B\le\frac{\sqrt{3}+1}{3\sqrt{3}}=\frac{3+\sqrt{3}}{9}\)

\(MaxB=\frac{3+\sqrt{3}}{9}\)khi x=y=z

20 tháng 3 2019

@Akai Haruma, Nguyen, Nguyễn Thị Ngọc Thơsvtkvtm

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Bạn tham khảo tại đây:

Câu hỏi của Vũ Sơn Tùng - Toán lớp 9 | Học trực tuyến

26 tháng 8 2016

Ta có:

\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)

\(1+y^2=xy+yz+xz+y^2=\left(y+z\right)\left(x+y\right)\)

\(1+z^2=xy+yz+xz+z^2=\left(x+z\right)\left(y+z\right)\)

Thay vào A được:

\(P=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(x+z\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(y+z\right)\left(x+y\right)}}\)\(+z\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(x+z\right)\left(y+z\right)}}\)

\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

\(=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)

\(=xy+xz+xy+yz+xz+zy\)

\(=2\left(xy+yz+xz\right)\)

\(=2\)(do xy+yz+xz=1)

=>Đpcm

26 tháng 8 2016

Dạng toán này rất nhiều bạn hỏi rồi: thay \(xy+yz+zx=1\) vào các căn thức rồi phân tích đa thức thành nhân tử.

25 tháng 9 2018

Ta co: \(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)

\(\Rightarrow\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}=\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=y+z\)

Thê vào ta được

\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)=2\left(xy+yz+zx\right)=2\)