Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left|x^2+1\right|\cdot\left(\left|x\right|-9\right)=0\)
=>x=9 hoặc x=-9
\(\left(3x-1\right)^2+2\left(9x^2-1\right)+\left(3x+1\right)^2\)
\(=9x^2-6x+1+18x^2+2+9x^2+6x+1\)
\(=36x^2+4\)
\(\left(x^2-1\right)\left(x+3\right)-\left(x-3\right)\left(x^3+3x+9\right)\)
\(=x^3+3x^2-x+3-\left(x^4+3x^2+9x-3x^3-9x-27\right)\)
\(=x^3+3x^2-x+3-x^4-3x^2-9x+3x^3+9x-27\)
\(=\left(3x^2-3x^2\right)+\left(9x-9x\right)-x-\left(27-3\right)+x^3-x^4+3x^3\)
\(=-x-24+x^3-x^4+3x^3\)
\(\left(x+4\right)\left(x-4\right)-\left(x-4\right)^2\)
\(=x^2-16-\left(x-4\right)^2\)
\(=x^2-16-x^2+8x-16\)
\(=8x-32\)
Làm tiếp nè :
2) / 2x + 4/ = 2x - 5
Do : / 2x + 4 / ≥ 0 ∀x
⇒ 2x - 5 ≥ 0
⇔ x ≥ \(\dfrac{5}{2}\)
Bình phương hai vế của phương trình , ta có :
( 2x + 4)2 = ( 2x - 5)2
⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0
⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0
⇔ 9( 4x - 1) = 0
⇔ x = \(\dfrac{1}{4}\) ( KTM)
Vậy , phương trình vô nghiệm .
3) / x + 3/ = 3x - 1
Do : / x + 3 / ≥ 0 ∀x
⇒ 3x - 1 ≥ 0
⇔ x ≥ \(\dfrac{1}{3}\)
Bình phương hai vế của phương trình , ta có :
( x + 3)2 = ( 3x - 1)2
⇔ ( x + 3)2 - ( 3x - 1)2 = 0
⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0
⇔ ( 4 - 2x)( 4x + 2) = 0
⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)
KL......
4) / x - 4/ + 3x = 5
⇔ / x - 4/ = 5 - 3x
Do : / x - 4/ ≥ 0 ∀x
⇒ 5 - 3x ≥ 0
⇔ x ≤ \(\dfrac{-5}{3}\)
Bình phương cả hai vế của phương trình , ta có :
( x - 4)2 = ( 5 - 3x)2
⇔ ( x - 4)2 - ( 5 - 3x)2 = 0
⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0
⇔ ( 4x - 9)( 1 - 2x) = 0
⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)
KL......
Làm tương tự với các phần khác nha
1)\(\left|4x\right|=3x+12\)
\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)
\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)
\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)
Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)
a: 1-2x<7
=>-2x<6
hay x>-3
b: (x-1)(x-2)>0
=>x-2>0 hoặc x-1<0
=>x>2 hoặc x<1
c: \(\left(x-2\right)^2\cdot\left(x+1\right)\left(x-4\right)< 0\)
=>(x+1)(x-4)<0
=>-1<x<4
a: -2x+1<7
=>-2x<6
hay x>-3
b: (x-1)(x-2)>0
=>x-2>0 hoặc x-1<0
=>x>2 hoặc x<1
c: \(\left(x-2\right)^2\left(x+1\right)\left(x-4\right)< 0\)
=>(x+1)(x-4)<0
=>-1<x<4
d: \(\dfrac{x^2\left(x-3\right)}{x-9}< 0\)
\(\Leftrightarrow\dfrac{x-3}{x-9}< 0\)
=>3<x<9
Ta có : \(A\left(x\right)+C\left(x\right)=3-2x^3-x+x^2-4x^2-3x^2-2x^3+3x-2\)
\(=-4x^3-6x^2+2x+1\)
\(A\left(x\right)-B\left(x\right)=3-2x^3-x+x^2-4x^2-\left(-x^3+9x^2-8x-5-2x^2\right)\)
\(=3-2x^3-x+x^2-4x^2+x^3-9x^2+8x+5+2x^2\)
\(=-x^3-10x^2+7x+8\)
Ta co
/x^3+x/=/9x^2+9/
Ma 9x^2+9 luon luon lon hon 0 voi moi x nen ta suy ra
/x^3+x/=9x^2+9
/x^3+x/=9*(x^2+1)
Suy ra x^3+x=9*(x^2+1) hoac -9*(x^2+1)
+ Neu x^3+x=9*(x^2+1)
( x^2+1)*x=(x^2+1)*9
suy ra x=9(vi x^2+1=x^2+1)
+ Neu x^3+x=-9*(x^2+1)
(x^2+1)*x=-9*(x^2+1)
suy ra x=-9(vi x^2+1=x^2+1)
Vay x thuoc tap hop 9 va -9