\(\left(x^2+4y^2+28\right)^2=17\left(x^4+y^4+14y^2+49\right)\)

Tìm các nghiệm tự nh...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

\(\left(x^2+4z\right)^2=17\left(x^4+z^2\right)\)

\(x^4+8x^2z+16z^2=17x^4+17z^2\)

\(t^4-2t^2z+z^2=\left(t^2-z\right)^2=0\)

Nghiệm duy nhất: \(t^2=z\Rightarrow t^2=y^2+7\Rightarrow\hept{\begin{cases}t=4\Rightarrow x=2\\y=3\end{cases}}\)KL (x,y)=(2,3)

10 tháng 4 2018

\(\left(x^2+4y^2+28\right)^2=17\left[x^4+\left(y^2+7\right)^2\right]\)

y^2 +7 =z

\(\Leftrightarrow x^4+8xz+16z^2=17x^4+17z^2\)

\(\Leftrightarrow16x^4+z^2-8xz=0\)\(\Leftrightarrow\left(4x^2-z\right)^2=0\)

\(\Leftrightarrow4x^2=z\Leftrightarrow4x^2-y^2=7\)

\(\left\{{}\begin{matrix}4x^2=16\\y^2=9\end{matrix}\right.\) \(\Leftrightarrow\left(x;y\right)=\left(\pm2;\pm3\right)\)

10 tháng 4 2018

Violympic toán 8

11 tháng 4 2018

\(\Leftrightarrow-\left(4x^2-y^2-7\right)^2=0\)

SURPRISE MOTHERFUKA !!

6 tháng 6 2017

sửa \(x^4+y^4+14y^2+49\)

6 tháng 6 2017

$(x^2+4y^2+28)^2=17(x^4+y^4+14y^2+49)$ - Số học - Diễn đàn Toán học

15 tháng 9 2018

a, x2-2x+1 b,9x2+6x+1

=x2-2x1+12 =(3x)2+2.3x.1+12

=(x+1)2 =(3x+1)2

c,x2+4xy+4y2

=x2+2x.2y+(2y)2

=(x+2y)2

d,49-14y+y2

=72-2.7y+y2

=(7-y)2

e,(x-y)2+2(x-y)+1

=(x-y)2+2(x-y).1+12

=[(x-y)+1]2

=(x-y+1)2

Chúc bạn học tốt!

15 tháng 9 2018

\(a,x^2-2x+1=\left(x-1\right)^2\)

\(b,9x^2+6x+1=\left(3x+1\right)^2\)

\(c,x^2+4xy+4y^2=\left(x+2y\right)^2\)

\(d,49-14y+y^2=\left(7-y\right)^2\)

\(e,\left(x-y\right)^2+2\left(x-y\right)+1=\left(x-y+1\right)^2\)

7 tháng 10 2017

nhân cái đầu với cái cuối

Dễ thấy vế trái chia hết cho 5 với y >0
Vậy y=0 , giải ra x 

Học tốt!!!!!!!

 Ta có :  2x;2x+1;2x+2;2x+3;2x+4 là 5 số tự nhiên liên tiếp.

                        =>  2x(2x+1)(2x+2)(2x+3)(2x+4)⋮5

                Mặt khác ƯCLN ( 2x; 5)=1 nên  (2x+1)(2x+2)(2x+3)(2x+4)⋮5 

                + Với  y≥1 thì VP= [(2x+1)(2x+2)(2x+3)(2x+4)−5y]⋮5 

                Mà VP= 11879≡4(mod5) 

                Suy ra phương trình vô nghiệm

                +Với y=0 ta có :

                        (2x+1)(2x+2)(2x+3)(2x+4)−50=11879 

                 <=> (2x+1)(2x+2)(2x+3)(2x+4)=11880 

                 <=> (2x+1)(2x+2)(2x+3)(2x+4)=9.10.11.12

                 <=> 2x+1=9 

                 <=> 2x=8 

                 <=> 2x=23 

                 <=>x=3

                 Vậy phương trình đã cho có 1 nghiệm duy nhất (x; y)=(3; 0)

21 tháng 6 2020

\(x^2=y\left(y+1\right)\left(y+2\right)\left(y+3\right)\)

\(\Leftrightarrow x^2=\left(y^2+3y\right)\left(y^2+3y+2\right)\)

Đặt \(y^2+3y=t\Rightarrow x^2=t\left(t+2\right)\Leftrightarrow x^2-\left(t^2+2t+1\right)=-1\)

\(\Leftrightarrow x^2-\left(t+1\right)^2=-1\)

\(\Leftrightarrow\left(x-t-1\right)\left(x+t+1\right)=-1\)

Xét ước thông thường ;)