Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2bc\)
\(=a^2+b^2+c^2+2ab-2ac-2bc-a^2+2ac-c^2-2ab+2bc\)
\(=b^2\)
Ta có:\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}=\frac{1}{x}-\frac{1}{x+6}=\frac{x+6}{x\left(x+6\right)}-\frac{x}{x\left(x+6\right)}=\frac{6}{x\left(x+6\right)}\)k mik nha
ĐKXĐ : \(x\ne0;-1;-2;-3;-4;-5;-6\)
Giá trị của của tổng trên rất dễ
Giá trị của nó là:
\(\frac{1}{x}-\frac{1}{x+6}\)
b) \(B=\)ghi lại đề nha bn
Đặt \(x^2+4x-3=t\) ta có:
\(B=t^2-5xt+6x^2\)
\(B=t^2-2xt-3xt+6x^2\)
\(B=t\left(t-2x\right)-3x\left(t-2x\right)=\left(t-2x\right)\left(t-3x\right)\)
\(B=\left(x^2+4x-3-2x\right)\left(x^2+4x-3-3x\right)\)
\(B=\left(x^2+2x-3\right)\left(x^2+x-3\right)\)
bn làm tương tự câu c) cũng như vậy nha!!!
\(a,\frac{1}{2}x+\frac{1}{2}+\frac{1}{4}x+\frac{3}{4}=3-\frac{1}{3}x-\frac{2}{3}\)
\(\frac{13}{12}x=\frac{13}{12}\Rightarrow x=1\)
ta có
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\)
\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+....+\frac{1}{x+6}\)
\(=\frac{1}{x}-\frac{1}{x+6}\)
Ta có (x - 2)2 - (x - 3) (x + 3) = 6
=> (x - 2)2 - (x2 - 32) = 6
=> x2 - 4x + 22 - x2 + 32 = 6
=> x2 - x2 - 4x + 4 + 9 = 6
=> - 4x + 13 = 6
=> -4x = -7
=> x = \(\frac{-7}{-4}=\frac{7}{4}\)
1) (x - 2)2 - (x - 3)(x + 3) = 17
=> x2 - 4x + 4 - x2 + 9 = 17
=> -4x = 17 - 13
=> -4x = 4
=> x = -1
2) TTT
3) x2 + 6x - 147 = 0
=> x2 + 19x - 13x - 147 = 0
=> x(x + 19) - 13(x + 19) = 0
=> (x - 13)(x + 19) = 0
=> \(\orbr{\begin{cases}x-13=0\\x+19=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=13\\x=-19\end{cases}}\)
4) (3x - 5)(2x + 3) - 6x2 = 7
=> 6x2 + 9x - 10x - 15 - 6x2 = 7
=> -x - 15 = 7
=> -x = 7 + 15
=> -x = 22
=> x = -22
5) TL
a) (x + 2)(x + 3) - (x - 2)(x + 5) = 6
x2 + 3x + 2x + 6 - (x2 + 5x - 2x - 10) = 6
x2 + 5x + 6 - x2 - 3x + 10 = 6
2x +16 = 6
\(\Rightarrow\) 2x = -10
\(\Rightarrow\) x = -5
b) (3x + 2)(2x + 9) - (x + 2)(6x + 1) = (x + 1) - (x - 6)
6x2 + 27x + 4x + 18 - (6x2 + x + 12x + 2) = x + 1 - x + 6
6x2 + 31x + 18 - 6x2 - 13x - 2 = 7
18x + 16 = 7
\(\Rightarrow\) 18x = -9
\(\Rightarrow\) x = -0.5
c) 3(2x - 1)(3x - 1) - (2x - 3)(9x - 1) = 0
3(6x2 - 2x - 3x + 1) - (18x2 - 2x - 27x + 3) = 0
3(6x2 - 5x + 1) - (18x2 - 29x + 3) = 0
18x2 - 15x + 3 - 18x2 + 29x - 3 = 0
14x = 0
\(\Rightarrow\) x = 0
không có điều kiên của x thì làm thế nào hả bạn