Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-5\right)\left(-2x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-5=0\\-2x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=5\\-2x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{-7}{2}\end{cases}}}\)
\(9x^2-1=\left(1+3x\right)\left(2x-3\right)\)
\(\Leftrightarrow9x^2-1=2x-3+6x^2-9x\)
\(\Leftrightarrow9x^2-1=-7x-3+6x^2\)
\(\Leftrightarrow9x^2-1+7x+3-6x^2=0\)
\(\Leftrightarrow3x^2+2+7x=0\)
\(\Leftrightarrow3x^2+6x+x+2=0\)
\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{3}\end{cases}}\)
\(\left(x+5\right)^2-3\left(x+5\right)\)
\(=\left(x+5\right)\left(x+5-3\right)\)
\(=\left(x+5\right)\left(x+2\right)\)
\(2x\left(x-3\right)-\left(x-3\right)^2\)
\(=\left(x-3\right)\left(2x-x+3\right)\)
\(=\left(x-3\right)\left(x+3\right)\)
a) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=27\)
\(\Rightarrow x^3+3^3-x\left(x^2-4\right)=27\)
\(\Rightarrow x^3+27-x^3+4x=27\)
\(\Rightarrow27+4x=27\)
\(\Rightarrow4x=0\)
\(\Rightarrow x=0\)
b) \(2x^2+7x+3=0\)
\(\Rightarrow2x^2+x+6x+3=0\)
\(\Rightarrow x\left(2x+1\right)+3\left(2x+1\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=-1\\x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
a)\(2x^3=x^2+2x-1\Leftrightarrow2x^3-x^2-2x+1=0\Leftrightarrow x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-1\right)=0\Leftrightarrow\left(2x-1\right)\left(x-1\right)\left(x+1\right)=0\)
<=> 2x-1=0 hoặc x-1=0 hoặc x+1=0 <=> x=1/2 hoặc x=1 hoặc x=-1
b)\(x^2-4+\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(5-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\5-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
3,
\(9\left(x-3\right)^2=4\left(x+2\right)^2\)
\(\Leftrightarrow3^2\left(x-3\right)^2=2^2\left(x+2\right)^2\)
\(\Leftrightarrow\left(3x-9\right)^2=\left(2x+4\right)^2\)
\(\Leftrightarrow\left(3x-9\right)^2-\left(2x+4\right)^2=0\)
\(\Leftrightarrow\left(3x-9-2x-4\right)\left(3x-9+2x+4\right)=0\)
\(\Leftrightarrow\left(x-13\right)\left(5x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\5x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-13\\x=1\end{matrix}\right.\)
1, \(\left(x+1\right)^2=4\left(x^2-2x+1\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(2x-2\right)^2=0\)
\(\Leftrightarrow\left(x+1-2x+2\right)\left(x+1+2x-2\right)=0\)
\(\Leftrightarrow\left(3-x\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3-x=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
vậy tập nghiệm của phương trinh \(S=\left\{3;\dfrac{1}{3}\right\}\)
2, \(\left(x^2-9\right)^2-9\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x^2-9\right)^2-\left(3x-9\right)^2=0\)
\(\Leftrightarrow\left(x^2-9-3x+9\right)\left(x^2-9+3x-9\right)=0\)
\(\Leftrightarrow\left(x^2-3x\right)\left(x^2+3x-18\right)=0\)
\(\Leftrightarrow x\left(x-3\right)\left(x^2+6x-3x-18\right)=0\)
\(\Leftrightarrow x\left(x-3\right)\left(x+6\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-6\end{matrix}\right.\)
vậy tập nghiệm của phương trinh \(S=\left\{0;3;-6\right\}\)
3, \(9\left(x-3\right)^2=4\left(x+2\right)^2\)
\(\Leftrightarrow\left(3x-9\right)^2-\left(2x+2\right)^2=0\)
\(\Leftrightarrow\left(3x-9-2x-2\right)\left(3x-9+2x+2\right)=0\)
\(\Leftrightarrow\left(x-11\right)\left(5x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-11=0\\5x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=\dfrac{7}{5}\end{matrix}\right.\)
vậy tập nghiệm của phương trinh \(S=\left\{11;\dfrac{7}{5}\right\}\)
Đặt \(u=x^2-x\)
Phương trình trở thành \(u^2-4u+4=0\)
\(\Leftrightarrow\left(u-2\right)^2=0\)
\(\Leftrightarrow u-2=0\)
\(\Rightarrow x^2-x=2\)
\(\Rightarrow x^2-x-2=0\)
Ta có \(\Delta=1^2+4.2=9,\sqrt{\Delta}=3\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1+3}{2}=2\\x=\frac{1-3}{2}=-1\end{cases}}\)
Đặt \(2x+1=w\)
Phương trình trở thành \(w^2-w=2\)
\(\Rightarrow\orbr{\begin{cases}w=2\\w=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=2\\2x+1=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}\)
\(^{\left(x^2-9\right)^2-9\left(x-3\right)^2}=0\)
\(\Leftrightarrow\)\(^{[\left(x^{ }-3\right)\left(x+3\right)]^2-9\left(x-3\right)^2}=0\)
\(\Leftrightarrow\)\(^{[\left(x^{ }-3\right)]^2[\left(x+3\right)^2-9]}=0\)
\(\Leftrightarrow\)(x-3 )^2=0 hoặc (x+3)^2=9
\(\Leftrightarrow\)x-3 =0 hoặc x+3=3 hoặc x+3=-3
\(\Leftrightarrow\) x=3 hoặc x=0 hoặc x=-6
Vậy x thuộc { -6; 0; 3}