\(\left(x^2-8\right)^2+36\)

\(x^4+x^2+1\) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x^2-8\right)^2-36\)

\(=\left(x^2-8-6\right)\left(x^2-8+6\right)\)

\(=\left(x^2-14\right)\left(x^2-2\right)\)

\(\left(x^2-8\right)^2-36\)

\(=\left(x^2-8\right)^2-6^2\)

\(=\left(x^2-14\right)\left(x^2-2\right)\)

3) \(\frac{x-2}{x-5}\) \(-\frac{5}{x^2-5x}=\frac{1}{x}\) \(\Leftrightarrow\) \(\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\) \(\Leftrightarrow\frac{\left(x-2\right).\left(x+5\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x+5\right)}{x.\left(x-5\right)}\) \(\Leftrightarrow x^2+5x-2x-10-5=1x+5\) \(\Leftrightarrow x^2+5x-2x-1x-10-5-5\) = 0 \(\Leftrightarrow\) \(x^2+2x-20=0\) \(\Leftrightarrow x^2+2x-10x-20=0\) \(\Leftrightarrow\) (x\(^2\) + 2x) - (10x +...
Đọc tiếp

3) \(\frac{x-2}{x-5}\) \(-\frac{5}{x^2-5x}=\frac{1}{x}\)

\(\Leftrightarrow\) \(\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\)

\(\Leftrightarrow\frac{\left(x-2\right).\left(x+5\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x+5\right)}{x.\left(x-5\right)}\)

\(\Leftrightarrow x^2+5x-2x-10-5=1x+5\)

\(\Leftrightarrow x^2+5x-2x-1x-10-5-5\) = 0

\(\Leftrightarrow\) \(x^2+2x-20=0\)

\(\Leftrightarrow x^2+2x-10x-20=0\)

\(\Leftrightarrow\) (x\(^2\) + 2x) - (10x + 20) = 0

\(\Leftrightarrow\) x.(x + 2) - 10.(x + 2) = 0

\(\Leftrightarrow\)

4) \(\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x^2+7x}\)

\(\Leftrightarrow\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x\left(x+7\right)}\)

\(\Leftrightarrow\frac{\left(x-4\right).\left(x+7\right)}{x.\left(x+7\right)}-\frac{1.\left(x+7\right)}{x.\left(x+7\right)}=\frac{-7}{x.\left(x+7\right)}\)

\(\Leftrightarrow\) \(x^2+7x-4x-28-x-7=-7\)

\(\Leftrightarrow x^2+7x-4x-x-28-7+7=0\)

\(\Leftrightarrow\) x\(^2\) + 2x - 28 = 0

\(\Leftrightarrow\) x\(^2\) + 2x - 14x - 28 = 0

\(\Leftrightarrow\) (x\(^2\) + 2x) - (14x + 28) = 0

\(\Leftrightarrow\) x.(x + 2) - 14.(x + 2) = 0

\(\Leftrightarrow\) (x - 14) = 0 hoặc (x + 2) = 0

\(\Leftrightarrow\) x = 4 (Nhận) hoặc x = -2 (Loại)

5) \(\frac{x+2}{x-2}+\frac{x-2}{x+2}=\frac{8x}{x^2-4}\)

\(\Leftrightarrow\) \(\frac{\left(x+2\right).\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{\left(x-2\right).\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{8x}{\left(x-2\right).\left(x+2\right)}\)

\(\Leftrightarrow x^2+2x+2x+4+x^2-2x-2x+4=8x\)

\(\Leftrightarrow\) \(x^2+x^2+2x+2x-2x-2x-8x+4+4=0\)

\(\Leftrightarrow2x^2-8x+8=0\)

\(\Leftrightarrow\) 2x\(^2\) - 2x - 8x + 8 = 0

\(\Leftrightarrow\) 2x(x - 1) - 8(x - 1) = 0

\(\Leftrightarrow\) 2x - 8 = 0 hoặc x - 1 = 0

\(\Leftrightarrow\) 2x = 8 hoặc x = 1

\(\Leftrightarrow\) x = 4 (Nhận) hoặc x = 1 (Nhận)

Vậy S = {4; 1}

6) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)

\(\Leftrightarrow\) \(\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}=\frac{4}{\left(x-1\right).\left(x+1\right)}\)

\(\Leftrightarrow\) x\(^2\) + x + x + 1 - x\(^2\) + x + x - 1 = 4

\(\Leftrightarrow\) 4x - 4 = 0

\(\Leftrightarrow\) 4 (x - 1) =0

\(\Leftrightarrow\) x - 1 = 0 / 4 = 0

\(\Leftrightarrow\) x = 1 (Nhận)

Vậy S = {1}

7) \(\frac{x+1}{x-1}+\frac{-4x}{x^2-1}=\frac{x-1}{x+1}\)

\(\Leftrightarrow\) \(\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}+\frac{-4x}{\left(x-1\right).\left(x+1\right)}=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x+1\right)}\)

\(\Leftrightarrow x^2+x+x+1-4x=x^2-x-x+1\)

\(\Leftrightarrow\) 0

Vậy S ={\(\varnothing\)}

0
6 tháng 2 2018

1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)

ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )

\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)

vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn

1, \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)

\(\Leftrightarrow-4x^2+28x+4x^3-20x=28x^2-13\)

\(\Leftrightarrow-32x^2+8x+4x^3-13=0\)( vô nghiệm )

2, \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)

\(\Leftrightarrow12x^3-7x^2-10x-7x^2-35x=-2x^2+11x-12+12x^3+2x^2\)

\(\Leftrightarrow12x^3-14x^2-45x=11x-12+12x^3\)

\(\Leftrightarrow-14x^2-56x-12=0\)( vô nghiệm )

20 tháng 8 2020

Mình làm riêng ra nhá , chứ nhiều quá nên thông cảm cho mình :))

1. \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)

=> \(-4x^2+28x+4x^3-20x=28x^2-13\)

=> \(-4x^2+4x^3+\left(28x-20x\right)=28x^2-13\)

=> \(-4x^2+4x^3+8x-28x^2+13=0\)

=> \(\left(-4x^2-28x^2\right)+4x^3+8x+13=0\)

=> \(-32x^2+4x^3+8x+13=0\)

=> vô nghiệm

2. \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)

=> \(4x^2\left(3x+2\right)-5x\left(3x+2\right)-7x\left(x+5\right)=-4\left(-2x+3\right)+x\left(-2x+3\right)+12x^3+2x^2\)

=> \(12x^3+8x^2-15x^2-10x-7x^2-35x=8x-12-2x^2+3x+12x^3+2x^2\)

=> \(12x^3+8x^2-15x^2-10x-7x^2-35x-8x+12+2x^2-3x-12x^3-2x^2=0\)

=> \(\left(12x^3-12x^3\right)+\left(8x^2-15x^2-7x^2+2x^2-2x^2\right)+\left(-10x-35x-8x-3x\right)+12=0\)

=> \(-14x^2-56x+12=0\)

=> .... tự tìm

Câu c dấu bằng chỗ nào ?

AH
Akai Haruma
Giáo viên
13 tháng 7 2018

a)

\((x^2+x)^2+3(x^2+x)+2\)

\(=(x^2+x)^2+(x^2+x)+2(x^2+x)+2\)

\(=(x^2+x)(x^2+x+1)+2(x^2+x+1)\)

\(=(x^2+x+2)(x^2+x+1)\)

b) \(x(x+1)(x+2)(x+3)+1\)

\(=[x(x+3)][(x+1)(x+2)]+1\)

\(=(x^2+3x)(x^2+3x+2)+1\)

\(=(x^2+3x)^2+2(x^2+3x)+1\)

\(=(x^2+3x+1)^2\)

AH
Akai Haruma
Giáo viên
13 tháng 7 2018

c) \((x^2+x+1)(x^2+3x+1)+x^2\)

\(=(x^2+x+1)[(x^2+x+1)+2x]+x^2\)

\(=(x^2+x+1)^2+2x(x^2+x+1)+x^2\)

\(=(x^2+x+1+x)^2\)

\(=(x^2+2x+1)^2=[(x+1)^2]^2=(x+1)^4\)

d) \((x^2+1)^2-4x(1-x^2)\)

\(=(x^2+1)^2+4x(x^2-1)\)

\(=(x^2+1)^2+(x-1)(4x^2+4x)\)

\(=(x^2+1)^2+(x-1)[4x^2+4+(4x-4)]\)

\(=(x^2+1)^2+(4x^2+4)(x-1)+(4x-4)(x-1)\)

\(=(x^2+1)^2+2(x^2+1)(2x-2)+(2x-2)^2\)

\(=(x^2+1+2x-2)^2=(x^2+2x-1)^2\)

Bài 1: Phân tích đa thức thành nhân tử: a) \(2x\left(x+1\right)+2\left(x+1\right)\) b) \(y^2\left(x^2+y\right)-zx^2-zy\) c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\) d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\) e) \(x^2-6xy+9y^2\) f) \(x^3+6x^2y+12xy^2+8y^3\) g) \(x^3-64\) h) \(125x^3+y^6\) k) \(0,125\left(a+1\right)^3-1\) t) \(x^2-2xy+y^2-xz+yz\) q) \(x^2-y^2-x+y\) p) \(a^3x-ab+b-x\) đ)...
Đọc tiếp

Bài 1: Phân tích đa thức thành nhân tử:

a) \(2x\left(x+1\right)+2\left(x+1\right)\)

b) \(y^2\left(x^2+y\right)-zx^2-zy\)

c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\)

d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)

e) \(x^2-6xy+9y^2\)

f) \(x^3+6x^2y+12xy^2+8y^3\)

g) \(x^3-64\)

h) \(125x^3+y^6\)

k) \(0,125\left(a+1\right)^3-1\)

t) \(x^2-2xy+y^2-xz+yz\)

q) \(x^2-y^2-x+y\)

p) \(a^3x-ab+b-x\)

đ) \(3x^2\left(a+b+c\right)+36xy\left(a+b+c\right)+108y^2\left(a+b+c\right)\)

l) \(x^2-x-6\)

i) \(x^4+4x^2-5\)

m) \(x^3-19x-30\)

j) \(x^4+x+1\)

y) \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

o) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

ê) \(4a^2b^2-\left(a^2+b^2+c^2\right)^2\)

w) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)

z) \(\left(x^2-8\right)^2+36\)

u) \(81x^4+4\)

Bài 2 : Tìm x

a)\(\left(2x-1\right)^2-25=0\)

b) \(8x^3-50x=0\)

c) \(\left(x-2\right)\left(x^2+2+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

d) \(3x\left(x-1\right)+x-1=0\)

e) \(2\left(x+3\right)-x^2-3x\) =0

f) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

5
12 tháng 10 2017

Bài 1 :

a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)

b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)

c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)

d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)

e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)

12 tháng 10 2017

Bài 1 :

f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)

g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)

h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)

3) \(\frac{x-2}{x-5}-\frac{5}{x^2-5x}=\frac{1}{x}\) \(\Leftrightarrow\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\) \(\Leftrightarrow\frac{x.\left(x-2\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x-5\right)}{x.\left(x-5\right)}\) Mc: \(x.\left(x-5\right)\) \(\Leftrightarrow\) \(x^2\) - 2\(x\) - 5 = \(x\) - 5 \(\Leftrightarrow\) \(x^2\) - 2\(x\) - \(x\) - 5 + 5 = 0 \(\Leftrightarrow\) \(x^2\) - 3\(x\) = 0 \(\Leftrightarrow\) \(x\) . (\(x\) - 3) =...
Đọc tiếp

3) \(\frac{x-2}{x-5}-\frac{5}{x^2-5x}=\frac{1}{x}\)

\(\Leftrightarrow\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\)

\(\Leftrightarrow\frac{x.\left(x-2\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x-5\right)}{x.\left(x-5\right)}\)

Mc: \(x.\left(x-5\right)\)

\(\Leftrightarrow\) \(x^2\) - 2\(x\) - 5 = \(x\) - 5

\(\Leftrightarrow\) \(x^2\) - 2\(x\) - \(x\) - 5 + 5 = 0

\(\Leftrightarrow\) \(x^2\) - 3\(x\) = 0

\(\Leftrightarrow\) \(x\) . (\(x\) - 3) = 0

\(\Leftrightarrow\) \(x\) = 0 hoặc \(x\) - 3 = 0

\(\Leftrightarrow\) \(x\) = 0 hoặc \(x\) = 3

Vậy \(x\) = 0 hoặc \(x\) = 3

\(x-5\ne0\Rightarrow x\ne5\)

\(x^2-5\ne0\Rightarrow x\ne5\)\(x\ne0\) \(\Rightarrow\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)

\(x\ne0\)

Vậy S = {3}

4) \(\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x^2+7x}\)

\(\Leftrightarrow\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x.\left(x+7\right)}\)

\(\Leftrightarrow\frac{x.\left(x-4\right)}{x.\left(x+7\right)}-\frac{1.\left(x+7\right)}{x.\left(x+7\right)}=\frac{-7}{x.\left(x+7\right)}\)

Mc: \(x.\left(x+7\right)\)

\(\Leftrightarrow x^2-4x-x-7=-7\)

\(\Leftrightarrow x^2-4x-x=-7+7\)

\(\Leftrightarrow\) \(x^2-5x=0\)

\(\Leftrightarrow x.\left(x-5\right)=0\)

\(\Leftrightarrow x=0\) hoặc \(x-5=0\)

\(\Leftrightarrow x=0\) hoặc \(x=5\)

Vậy \(x=0\) hoặc \(x=5\)

\(x+7\ne0\Rightarrow x\ne-7\)

\(x^2+7\ne0\Rightarrow x\ne-7\)\(x\ne0\) \(\Rightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-7\end{matrix}\right.\)

\(x\ne0\)

Vậy S = {5}

5) \(\frac{x+2}{x-2}+\frac{x-2}{x+2}=\frac{8x}{x^2-4}\)

\(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{matrix}\right.\Rightarrow TXĐ\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)

Mc : \(\left(x-2\right).\left(x+2\right)\)

\(\Leftrightarrow\frac{\left(x+2\right).\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{\left(x-2\right).\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{8x}{\left(x-2\right).\left(x+2\right)}\)

\(\Leftrightarrow x^2+2x+2x+4+x^2-2x-2x+4=8x\)

\(\Leftrightarrow x^2+x^2+2x+2x-2x-2x-8x+4+4=0\)

\(\Leftrightarrow2x^2-8x+8=0\)

\(\Leftrightarrow\) \(2x^2-4x-4x+8=0\)

\(\Leftrightarrow\) \(2x.\left(x-2\right)-4.\left(x-2\right)=0\)

\(\Leftrightarrow\left(2x-4\right).\left(x-2\right)=0\)

\(\Leftrightarrow2x-4=0\) hoặc \(x-2=0\)

\(\Leftrightarrow x=2\) hoặc \(x=2\)

\(\Leftrightarrow x=2\) (Loại) hoặc x = 2 (Loại)

Vậy S = \(\left\{\varnothing\right\}\)

6) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)

\(\Leftrightarrow\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}=\frac{4}{\left(x-1\right).\left(x+1\right)}\)

MC: \(\left(x-1\right).\left(x+1\right)\)

\(\Leftrightarrow x^2+x+x+1-x^2+x+x-1=4\)

\(\Leftrightarrow x^2-x^2+x+x+x+x+1-1-4=0\)

\(\Leftrightarrow4x-4=0\)

\(\Leftrightarrow4.\left(x-1\right)=0\)

\(\Leftrightarrow\) 4 = 0 hoặc \(x-1=0\)

\(\Leftrightarrow\) 4 = 0 hoặc \(x=1\)

\(\Leftrightarrow\) 4 = 0 (Loại) hoặc \(x=1\) (Loại)

Vậy S = \(\left\{\varnothing\right\}\)

7) \(\frac{x+1}{x-1}+\frac{-4x}{x^2-1}=\frac{x-1}{x+1}\)

\(\Leftrightarrow\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}+\frac{-4x}{\left(x-1\right).\left(x+1\right)}=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}\)

\(Mc:\left(x-1\right).\left(x+1\right)\)

\(\Leftrightarrow\) \(x^2+x+x+1-4x=x^2-x-x+1\)

\(\Leftrightarrow x^2-x^2+x+x-4x+x+x=-1+1\)

\(\Leftrightarrow0=0\) (Nhận)

Vậy S = \(\left\{x\in R;x\ne\pm1\right\}\)

0