Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Đặt \(x^2+5x+4=a\)
\(\Leftrightarrow a=5\sqrt{a+24}\)
\(\Leftrightarrow a^2=25a+600\)
\(\Leftrightarrow a^2-25a-600=0\)
\(\Leftrightarrow\left(a-40\right)\left(a+15\right)=0\)
\(\Leftrightarrow a=-15\)
hay S=∅
\(\Leftrightarrow4x^4+2x^2+2x\sqrt{6x^2+3}-12=0\)
Đặt \(x\sqrt{6x^2+3}=t\Rightarrow6x^4+3x^2=t^2\)
\(\Rightarrow4x^4+2x^2=\frac{2}{3}t^2\)
Pt trở thành:
\(\frac{2}{3}t^2+2t-12=0\Leftrightarrow t^2+3t-18=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\sqrt{6x^2+3}=3\left(x>0\right)\\x\sqrt{6x^2+3}=-6\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}6x^4+3x^2-9=0\\6x^4+3x^2-36=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=1\\x^2=\frac{-1+\sqrt{97}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\sqrt{\frac{-1+\sqrt{97}}{2}}\end{matrix}\right.\)
Lời giải:
Ta có:
\(A^2=(\sqrt{x^2-4x+5}-\sqrt{x^2+6x+13})^2=2x^2+2x+18-2\sqrt{(x^2-4x+5)(x^2+6x+13)}(*)\)
Áp dụng BĐT Bunhiacopxky:
\((x^2-4x+5)(x^2+6x+13)=[(x-2)^2+1^2][(x+3)^2+2^2]\)
\(\geq [(x-2)(x+3)+1.2]^2=(x^2+x-4)^2\)
\(\Rightarrow \sqrt{(x^2-4x+5)(x^2+6x+13)}\geq |x^2+x-4|\geq x^2+x-4(**)\)
Từ \((*); (**)\Rightarrow A^2\leq 2x^2+2x+18-2(x^2+x-4)\)
\(\Leftrightarrow A^2\leq 26\Rightarrow A\leq \sqrt{26}\)
Vậy $A_{\max}=\sqrt{26}$. Dấu "=" xảy ra khi $x=7$