\(\left(x+1\right)^4+\left(x^2+x+1\right)^2\)

Phân tích đa thức thành nhân tử

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2016

bày này ko phân k đc vì vô nghiệm chỉ làm đc đến đây thôi

(x2+x+1)(2x2+x+2+2x)+x2

nhớ

3 tháng 11 2016

(x+1)4+(x2+x+1)2=x4+4x3+6x2+4x+1+x4+x2+1+2x3+2x+2x2=2x4+6x3+9x2+6x+2

=(2x4+4x3+4x2)+(2x3+4x2+4x)+(x2+2x+2)=2x2(x2+2x+2)+2x(x2+2x+2)+(x2+2x+2)

=(x2+2x+2)(2x2+2x+1)

15 tháng 6 2017

\(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)

21 tháng 9 2018

Tacó:

\(A=x^2\left(x^4-1\right)\left(x^2+2\right)+1\)

\(=x^2\left(x^2-1\right)\left(x^2+1\right)\left(x^2+2\right)+1\)

\(=\left(x^4+x^2\right)\left(x^4+x^2-2\right)+1\)

Dat \(a=x^4+x^2\)

\(A=a\left(a-2\right)+1=\left(a-1\right)^2\)

\(=\left(x^4+x^2-1\right)^2\)

2 tháng 8 2018

\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)

\(=\left(x-1\right)\left(x+1\right)\left(x+4+1\right)\left(x+4-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+5\right)\left(x-3\right)\)

=.= hok tốt!!

25 tháng 2 2020

Ta có :
\(x^2\left(x^4-1\right)\left(x^2+1\right)+1=x^2\left(x^2-1\right)\left(x^2+1\right)\left(x^2+2\right)+1\) 
\(\Leftrightarrow x^2\left(x^2+1\right)\left(x^2-1\right)\left(x^2+2\right)+1=\left(x^4-x^2\right)\left(x^4+x^2-2\right)+1\)
Gọi \(x^4-x^2\) là t, ta có:
t(t-2)+1=\(t^2-2t+1=\left(t-1\right)^2=\left(x^4+x^2-1\right)^2\)

28 tháng 8 2016

Ta có :

\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)

\(=3\left(x^4+x^3+x^2-x^3+1\right)-\left(x^2+x+1\right)^2\)

\(=3\left[\left(x^4+x^3+x^2\right)-\left(x^3-1\right)\right]-\left(x^2+x+1\right)^2\)

\(=3\left[\left(x^2+x+1\right)x^2-\left(x-1\right)\left(x^2+x+1\right)\right]-\left(x^2+x+1\right)^2\)

\(=3\left(x^2+x+1\right)\left(x^2-x+1\right)-\left(x^2+x+1\right)^2\)

\(=\left(x^2+x+1\right)\left[3\left(x^2-x+1\right)-\left(x^2+x+1\right)\right]\)

\(=\left(x^2+x+1\right)\left(3x^2-3x+3-x^2-x-1\right)\)

\(=\left(x^2+x+1\right)\left(2x^2+2-4x\right)\)

\(=2\left(x^2+x+1\right)\left(x^2+1-2x\right)\)

\(=2\left(x^2+x+1\right)\left(x-1\right)^2\)