Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-3y\right|^{2019}+\left|y+\text{4}\right|^{2020}=0\\ \)
mà \(\left|x-3y\right|\ge0\Rightarrow\left|x-3y\right|^{2019}\ge0\)
\(\left|y+4\right|\ge0\Rightarrow\left|y+4\right|^{2020}\ge0\)
=> phương trình xảy ra <=> \(\left|x-3y\right|=\left|y+4\right|=0\Rightarrow\hept{\begin{cases}y=-4\\x=-12\end{cases}}\)
\(\left|x-3y\right|^{2019}+\left|y+4\right|^{2020}=0\)
\(\text{Ta có : }\left|x-3y\right|^{2019}\ge0;\left|y+4\right|^{2019}\ge0\)
\(\Rightarrow\orbr{\begin{cases}\left|x-3y\right|^{2019}=0\\\left|y+4\right|^{2020}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\left|x-3y\right|=0\\\left|y+4\right|=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-3y=0\\y+4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3y\left(1\right)\\y=-4\left(2\right)\end{cases}}\)
\(\text{Thay (2) vào (1) }\Rightarrow x=-12\)
\(\left|3x-4\right|+\left|3y+5\right|=0\)
Mà \(\left|3x-4\right|+\left|3y+5\right|\ge0\)
\(\Rightarrow\left[\begin{matrix}\left|3x-4\right|=0\\\left|3y+5\right|=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=\frac{4}{3}\left(loại\right)\\y=-\frac{5}{3}\left(loại\right)\end{matrix}\right.\)
Vậy không có giá trị x, y thỏa mãn đề bài
a, \(2\left|2x-3\right|=\dfrac{1}{2}\)
\(\Rightarrow\left|2x-3\right|=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}2x-3=\dfrac{1}{4}\\2x-3=-\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{13}{8}\\x=\dfrac{11}{8}\end{matrix}\right.\)
b, \(7,5-3\left|5-2x\right|=-4,5\)
\(\Rightarrow3\left|5-2x\right|=12\)
\(\Rightarrow\left|5-2x\right|=4\)
\(\Rightarrow\left\{{}\begin{matrix}5-2x=4\\5-2x=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\)
c, \(\left|3x-4\right|+\left|3y+5\right|=0\)
Với mọi giá trị của \(x;y\in R\) ta có:
\(\left|3x-4\right|\ge0;\left|3y+5\right|\ge0\)
\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\) với mọi giá trị của \(x;y\in R\).
Để \(\left|3x-4\right|+\left|3y+5\right|=0\) thì
\(\left\{{}\begin{matrix}\left|3x-4\right|=0\\\left|3y+5\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\)
Vậy.............
Chúc bạn học tốt!!!
\(\left[{}\begin{matrix}\\\end{matrix}\right.\)cái này là hoặc
\(\left\{{}\begin{matrix}\\\end{matrix}\right.\) cái này là và
a)
\(\left|x\right|-2\left|x\right|+3\left|x\right|=16+6\left|x\right|-19\)
\(\left|x\right|-2\left|x\right|+3\left|x\right|-6\left|x\right|=16-19\)
\(\left|x\right|.\left(1-2+3-6\right)=-3\)
\(\left|x\right|.\left(-4\right)=-3\)
\(\left|x\right|=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
b,
2.(|x| - 5) - 15 = 9
\(2.\left(\left|x\right|-5\right)=9+15\)
\(2.\left(\left|x\right|-5\right)=24\)
\(\left|x\right|-5=24:2\)
\(\left|x\right|-5=12\)
\(\left|x\right|=12+5\)
\(\left|x\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
c,
|8 - 2x| + |4y - 16| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|8-2x\right|=0\\\left|4y-16\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}8-2x=0\\4y-16=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=8\\4y=16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
d,
|x - 14| + |2y - x| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|x-14\right|=0\\\left|2y-x\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-14=0\\2y-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
2.Tìm x, y, z biết
a,
2.|3x| + |y + 3| + |z - y| = 0
\(\Rightarrow\left\{{}\begin{matrix}2.\left|3x\right|=0\\\left|y+3\right|=0\\\left|z-y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x\right|=0\\y+3=0\\z-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=0\\y=-3\\z=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
b, (x - 3y)2 + | y + 4|= 0
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3y\right)2=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
a) \(\left(x+2\right)\left(y-3\right)=5\)
Ta có bảng sau:
x + 2 | 1 | 5 | -1 | -5 |
y - 3 | 5 | 1 | -5 | -1 |
x | -1 | 3 | -3 | -7 |
y | 8 | 4 | -2 | 2 |
Vậy cặp số \(\left(x;y\right)\) là \(\left(-1;8\right);\left(3;4\right);\left(-3;-2\right);\left(-7;2\right)\)
b) \(\left|x+2\right|+\left|y+5\right|=0\)
\(\Rightarrow\left[\begin{matrix}\left|x+2\right|=0\\\left|y+5\right|=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)
Vậy \(x=-2;y=-5\)
c) tương tự b
d) sai đề
\(\left(x-1\right)⋮\left(x+5\right)\)
\(\Rightarrow\left[\left(x+5\right)-6\right]⋮\left(x+5\right)\) mà \(\left(x+5\right)⋮\left(x+5\right)\)
\(\Rightarrow6⋮\left(x+5\right)\)
\(\Rightarrow\left(x+5\right)\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\)
\(\Rightarrow x\in\left\{6;7;8;11;4;3;2;-1\right\}\)
Vì `{(|x - 3y|^2023 >=0), (|y+4|^2024 >=0):} forall x, y`
Nên `{(x=3y), (y = -4):}`
`<=> {(x=-12), (y=-4):}`
=>x-3y=0 và y+4=0
=>y=-4 và x=3y=-12