K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2020

Bài làm:

Ta có: \(\hept{\begin{cases}\left(x-3,5\right)^2\ge0\\\left(y-\frac{1}{10}\right)^2\ge0\end{cases}\left(\forall x,y\right)}\)

=> \(\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^2\ge0\left(\forall x,y\right)\) , mà theo đề bài:

\(\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^2\le0\) nên dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x-3,5\right)^2=0\\\left(y-\frac{1}{10}\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{7}{2}\\y=\frac{1}{10}\end{cases}}\)

30 tháng 8 2020

Ta có : 

\(\left(x-3,5\right)^2\ge0\forall x\)     

\(\left(y-\frac{1}{10}\right)^4\ge0\forall y\)

24 tháng 11 2019

\(\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)(1)

Vì \(\left(\frac{1}{3}-2x\right)^{2018}\ge0\forall x\)\(\left(3y-x\right)^{2020}\ge0\forall x,y\)

\(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\ge0\forall x,y\)(2)

Từ (1), (2) \(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}=0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}-2x=0\\3y-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=\frac{1}{18}\end{cases}}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=6+18=24\left(đpcm\right)\)

20 tháng 8 2017

mk chưa lên lớp 7

20 tháng 8 2017

Áp dụng tính chất: \(a^{2n}+b^{2m}=0\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}\)(2n và 2m là các số chẵn)

17 tháng 5 2017

cho em xin khái niệm số hữu tỉ r em giải đoàng hoàng ra cho

17 tháng 5 2017

Trong toán học, số hữu tỉ là các số x có thể biểu diễn dưới dạng phân số (thương) a/b, trong đó a và b là các số nguyên nhưng b{\displaystyle \neq }0. Tập hợp số hữu tỉ ký hiệu là {\displaystyle \mathbb {Q} }.

Một cách tổng quát:

{\displaystyle \mathbb {Q} =\left\{x|x={\frac {m}{n}};m\in \mathbb {Z} ,n\in \mathbb {Z^{*}} \right\}}

Tập hợp số hữu tỉ là tập hợp đếm được.

19 tháng 9 2017

Ta có :

\(\left(2x-5\right)^{2014}+\left(3y+4\right)^{2016}\le0\)

\(\left\{{}\begin{matrix}\left(2x-5\right)^{2014}\ge0\\\left(3y+4\right)^{2016}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(2x-5\right)^{2014}+\left(3y+4\right)^{2016}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2014}=0\\\left(3y+4\right)^{2016}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{4}\end{matrix}\right.\)

Vậy ..

19 tháng 9 2017

Giải:

Theo đề ra, ta có:

\(\left(2x-5\right)^{2014}+\left(3y+4\right)^{2016}\le0\)

Mà: \(\left(2x-5\right)^{2014}\ge0\)\(\left(3y+4\right)^{2016}\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-5\right)^{2014}=0\\\left(3y+4\right)^{2016}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\)

Vậy ...

Chúc bạn học tốt!

19 tháng 9 2017

Dựa vào số mũ chắc chắn chúng ta biết ko thể bé hơn ko đc 

Nên : đề bài phải là Lớn hơn hoặc bằng ko . 

Ta có : \(\left(2x-5\right)^{2014}\ge0\forall x\in R\)

             \(\left(3x-4\right)^{2016}\ge0\forall x\in R\)

Nên : \(\left(2x-5\right)^{2014}+\left(3x-4\right)^{2016}\ge0\forall x\in R\) (đpcm) 

19 tháng 9 2017

Vì \(\hept{\begin{cases}\left(2x-5\right)^{2014}\ge0\\\left(3y+4\right)^{2016}\ge0\end{cases}\forall x,y\Rightarrow\left(2x-5\right)^{2014}+\left(3y+4\right)^{2016}\ge0}\)

Mà \(\left(2x-5\right)^{2014}+\left(3y+4\right)^{2016}\le0\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x-5\right)^{2014}=0\\\left(3y+4\right)^{2016}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}}\)

24 tháng 9 2020

a) Vì |x - 3,5| ≥ 0∀x

|4,5 - y| ≥ 0∀y

=> |x - 3,5| + |4,5 - y| ≥ 0 ∀x,y

Dấu " = " xảy ra khi và chỉ khi |x - 3,5| = 0 hoặc |4,5 - y| = 0 => x = 3,5 hoặc y = 4,5

Vậy GTNN = 0 khi x = 3,5;y = 4,5

b) |x - 2| ≥ 0 ∀x

|3 - y| ≥ 0 ∀y

=> |x - 2| + |3 - y| ≥ 0 ∀x,y

Dấu " = " xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x-2=0\\3-y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

Vậy GTNN = 0 <=> x = 2,y = 3

c) \(\left|x+\frac{2}{3}\right|+\left|y-\frac{3}{4}\right|+\left|z-5\right|=0\)

\(\left\{{}\begin{matrix}\left|x+\frac{2}{3}\right|\ge0\forall x\\\left|y-\frac{3}{4}\right|\ge0\forall y\\\left|z-5\right|\ge0\forall z\end{matrix}\right.\)

=> \(\left|x+\frac{2}{3}\right|+\left|y-\frac{3}{4}\right|+\left|z-5\right|\ge0\forall x,y,z\)

Dấu " = " xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\left|x+\frac{2}{3}\right|=0\\\left|y-\frac{3}{4}\right|=0\\\left|z-5\right|=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=-\frac{2}{3}\\x=\frac{3}{4}\\z=5\end{matrix}\right.\)

Vậy GTNN = 0 khi x = -2/3,y = 3/4,z = 5

Bài cuối tự làm :)))