\(-\left(x-1\right)\left(-x^2+2y\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(-\left(x-1\right)\left(-x^2+2y\right)\)

\(=\left(x-1\right)\left(x^2-2y\right)\)

\(=x^3-2xy-x^2+2y\)

19 tháng 6

\(-(x-1)(-x^2+2y)\)

\(=-\left\lbrack x(-x^2+2y)-1(-x^2+2y)\right\rbrack\)

\(=-\left\lbrack-x^3+2xy+x^2-2y\right\rbrack\)

\(=x^3-x^2-2xy+2y\)

22 tháng 12 2018

A.(x+2y).(x+2y-1) = x^2 +4xy + 4y^2 - x - 2y

B. (x-2y).(x+2y-1) = x^2 - x - 4y^2 + 2y

C. (x-2y).(x-2y+1) = x^2 - 4xy + 4y^2 + x - 2y

D.(x+2y).(x-2y) = x^2 - 4y^2

=>....

27 tháng 8 2019

help me!!

1) \(\left(x+2y\right)^2=x^2+4xy+4y^2\)

2) \(\left(2x+3y\right)^2=4x^2+12xy+9y^2\)

3) \(\left(x+\frac{1}{3}\right)^4=\left[\left(x+\frac{1}{3}\right)^2\right]^2=\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)^2=x^4+\frac{4}{9}x^2+\frac{1}{81}+\frac{4}{3}x^3+\frac{4}{27}x+\frac{2}{9}x^2=x^4+\frac{2}{3}x^2+\frac{1}{81}+\frac{4}{3}x^3+\frac{4}{27}x\)

4) \(\left(2x+y^2\right)^3=8x^3+12x^2y^2+6xy^4+y^6\)

5) Sửa đề: \(\left(\frac{x}{2}-2y\right)^3=\frac{x^3}{8}-\frac{3x^2}{2}+6xy^2-8y^3\)

6) \(\left(\sqrt{2x-y}\right)^4=\left(2x-y\right)^2=4x^2-4xy+y^2\)

7) \(\left(x+1\right)\left(x^2-x+1\right)=x^3+1\)

8) \(\left(x-3\right)\left(x^2+3x+9\right)=x^3-27\)

21 tháng 10 2020

cau a : (3x^2y-6xy+9x)(-4/3xy)

           =-4/3xy.3x^2y+4/3xy.6xy-4/3xy.9x

           =-4x+8-8y

cau b : (1/3x+2y)(1/9x^2-2/3xy+4y^2)

            =(1/3)^3-2/9x^2y+8y^3+4/3xy^2+2/9x^2y-4/3xy^2+8y^3

             =(1/3)^3 + (2y)^3x-2

cau c :  (x-2)(x^2-5x+1)+x(x^2+11)

            =x^3-5x^2+x-2x^2+10x-2+x^3+11x

            =2x^3-7x^2+22x-2

cau d := x^3 + 6xy^2 -27y^3

cau e := x^3 + 3x^2 -5x - 3x^2y - 9xy = 15y

cau f := x^2-2x+2x -4-2x-1

          = x(x-2)-5

21 tháng 10 2020

cau e la + 15y ko phai =15y

11 tháng 9 2018

a)\(=\left(x^2-7x-9x+63\right)+1\)

\(=x^2-7x-9x+63+1\)

=\(x^2-16x+64\)

\(=\left(x-8\right)^2\)

a: \(=x^2-16x+63+1\)

\(=x^2-16x+64=\left(x-8\right)^2\)

b: \(=\left(x^2+x\right)^2-2\left(x^2+x\right)+1+4\left(x^2+x\right)\)

\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)

\(=\left(x^2+x+1\right)^2\)

c: \(=\left(x+2y-3-2\right)^2\)

\(=\left(x+2y-5\right)^2\)

d: \(=\left(x-y\right)^3-1-3\left(x-y\right)^2+3\left(x-y\right)\)

\(=\left(x-y-1\right)^3\)

13 tháng 7 2017

a) \(-2x\left(10x-3\right)+5x\left(4x+1\right)=25\)

\(-20x^2+6x+20x^2+5x=25\)

\(\Rightarrow6x+5x=25\)

\(\Rightarrow11x=25\)

\(\Rightarrow x=\dfrac{25}{11}\)

b) \(y\left(5-2y\right)+2y\left(y-1\right)=15\)

\(5y-2y^2+2y^2-2y=15\)

\(\Rightarrow5y-2y=15\)

\(\Rightarrow3y=15\)

\(\Rightarrow y=5\)

c)\(x\left(x+1\right)-\left(x+1\right)=35\)

\(\Rightarrow\left(x-1\right)\left(x+1\right)=35\)

\(\Rightarrow x^2-1=35\)

\(\Rightarrow x^2=36\)

\(\Rightarrow x=6;x=-6\)

d)\(x\left(x^2+x+1\right)-x^2\left(x+1\right)=0\)

\(x^3+x^2+x-x^3+x=0\)

\(\Rightarrow x^2+2x=0\)

\(\Rightarrow x\left(x+2\right)=0\)

\(\Rightarrow x=0;x=0-2=-2\)

Vậy \(x=0;x=-2\)

8 tháng 10 2017

a)\((\dfrac{5}{7}x^2y)^3:(\dfrac{1}{7}xy)^3\)

=\((\dfrac{5}{7}x^2y:\dfrac{1}{7}:x:y)^3\)

=(\(\dfrac{5}{7}.7.x^2:x.y:y)^3\)

=(5x)\(^3\)

=5\(^3\).x\(^3\)

=125.x\(^3\)

22 tháng 8 2017

mann nào trả lời đc thui k hết 5 cái nick lun :D

22 tháng 8 2017

\(B=\left[\left(\frac{x}{y}-\frac{y}{x}\right):\left(x-y\right)-2.\left(\frac{1}{y}-\frac{1}{x}\right)\right]:\frac{x-y}{y}\)

\(=\left[\frac{x^2-y^2}{xy}.\frac{1}{x-y}-2.\frac{x-y}{xy}\right].\frac{y}{x-y}\)

\(=\left(\frac{\left(x-y\right)\left(x+y\right)}{xy.\left(x-y\right)}-\frac{2.\left(x-y\right)}{xy}\right).\frac{y}{x-y}\)

\(=\left(\frac{x+y}{xy}-\frac{2x-2y}{xy}\right).\frac{y}{x-y}=\frac{x+y-2x+2y}{xy}.\frac{y}{x-y}=\frac{y.\left(3y-x\right)}{xy.\left(x-y\right)}=\frac{3y-x}{x.\left(x-y\right)}\)

\(C=\left(\frac{x+y}{2x-2y}-\frac{x-y}{2x+2y}-\frac{2y^2}{y-x}\right):\frac{2y}{x-y}\)

\(=\left(\frac{x+y}{2.\left(x-y\right)}-\frac{x-y}{2.\left(x+y\right)}+\frac{2y^2}{x-y}\right).\frac{x-y}{2y}\)

\(=\frac{\left(x+y\right)^2-\left(x-y\right)^2+2.2y^2.\left(x+y\right)}{2.\left(x-y\right)\left(x+y\right)}.\frac{x-y}{2y}\)

\(=\frac{\left(x+y+x-y\right)\left(x+y-x+y\right)+4y^2.\left(x+y\right)}{2.\left(x-y\right)\left(x+y\right)}.\frac{x-y}{2y}\)

\(=\frac{4xy+4xy^2+4y^3}{2.\left(x-y\right)\left(x+y\right)}.\frac{x-y}{2y}=\frac{4y.\left(x+xy+y^2\right).\left(x-y\right)}{4y.\left(x-y\right)\left(x+y\right)}=\frac{x+xy+y^2}{x+y}\)

\(D=3x:\left\{\frac{x^2-y^2}{x^3+y^3}.\left[\left(x-\frac{x^2+y^2}{y}\right):\left(\frac{1}{x}-\frac{1}{y}\right)\right]\right\}\)

\(=3x:\left\{\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}.\left[\frac{xy-x^2-y^2}{y}:\frac{y-x}{xy}\right]\right\}\)

\(=3x:\left[\frac{x-y}{x^2-xy+y^2}.\left(\frac{xy-x^2-y^2}{y}.\frac{xy}{y-x}\right)\right]\)

\(=3x:\left(\frac{x-y}{x^2-xy+y^2}.\frac{xy.\left(x^2-xy+y^2\right)}{y.\left(x-y\right)}\right)\)

\(=3x:\frac{xy.\left(x-y\right)\left(x^2-xy+y^2\right)}{y.\left(x-y\right)\left(x^2-xy+y^2\right)}=3x:x=3\)

\(E=\frac{2}{x.\left(x+1\right)}+\frac{2}{\left(x+1\right)\left(x+2\right)}+\frac{2}{\left(x+2\right)\left(x+3\right)}\)

\(=2.\left(\frac{1}{x.\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}\right)\)

\(=2.\frac{\left(x+2\right)\left(x+3\right)+x.\left(x+3\right)+x.\left(x+1\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=2.\frac{x^2+2x+3x+6+x^2+3x+x^2+x}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=2.\frac{3x^2+9x+6}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}=2.\frac{3.\left(x^2+3x+2\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=\frac{6.\left(x^2+x+2x+2\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\frac{6.\left[x.\left(x+1\right)+2.\left(x+1\right)\right]}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=\frac{6.\left(x+1\right)\left(x+2\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\frac{6}{x.\left(x+3\right)}\)