Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\frac{2000\cdot2001\cdot2002\cdot...\cdot2999}{1\cdot2\cdot3\cdot...\cdot1000}}{\frac{1001\cdot1002\cdot1003\cdot...\cdot2999}{1\cdot2\cdot3\cdot...\cdot1999}}=\frac{2000\cdot2001\cdot2002\cdot...\cdot2999}{1\cdot2\cdot3\cdot...\cdot1000}\times\frac{1\cdot2\cdot3\cdot...\cdot1999}{1001\cdot1002\cdot1003\cdot...\cdot2999}\)
\(A=1\)
Lời giải:
\(A=\frac{(2^3+1)(3^3+1)....(1000^3+1)}{(2^3-1)(3^3-1)....(1000^3-1)}=\frac{(2+1)(2^2-2+1)(3+1)(3^2-3+1)....(1000+1)(1000^2-1000+1)}{(2-1)(2^2+2+1)(3-1)(3^2+3+1)...(1000-1)(1000^2+1000+1)}\)
\(=\frac{(2+1)(3+1)...(1000+1)}{(2-1)(3-1)...(1000-1)}.\frac{(2^2-2+1)(3^2-3+1)...(1000^2-1000+1)}{(2^2+2+1)(3^2+3+1)...(1000^2+1000+1)}\)
\(=\frac{1000.1001}{2}.\frac{(2^2-2+1)(3^2-3+1)....(1000^2-1000+1)}{(2^2+2+1)(3^2+3+1)....(1000^2+1000+1)}\)
Ta thấy: \(n^2-n+1=(n^2-2n+1)+n=(n-1)^2+(n-1)+1\)
\(\Rightarrow 3^2-3+1=2^2+2+1\)
\(4^2-4+1=3^2+3+1\)
......
\(1000^2-1000+1=999^2+999+1\)
\(\Rightarrow (3^2-3+1)(4^2-4+1)...(1000^2-1000+1)=(2^2+2+1)(3^2+3+1)...(999^2+999+1)\)
Do đó: \(A=\frac{1000.1001}{2}.\frac{2^2-2+1}{1000^2+1000+1}=\frac{3}{2}.\frac{1000.1001}{1000(1000+1)+1}=\frac{3}{2}.\frac{1000.1001}{1000.1001+1}< \frac{3}{2}\)
a: \(\left(a^2-b^2\right)^2+\left(2ab\right)^2\)
\(=a^4-2a^2b^2+b^4+4a^2b^2\)
\(=a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\)
b: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)
\(=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
c: \(\left(ax+b\right)^2+\left(a-bx\right)^2+c^2x^2\)
\(=a^2x^2+b^2+a^2+b^2x^2+c^2x^2\)
\(=a^2\left(x^2+1\right)+b^2\left(x^2+1\right)+c^2x^2\)
\(=\left(x^2+1\right)\left(a^2+b^2\right)+c^2x^2\)
a, P là snt > 3 => \(\left(p-1\right)\left(p+1\right)\)là tích 2 số chẵn liên tiếp ( p-1 >= 4 )
nên sẽ tồn tại 1 bội của 4 giả sử số đó là p+1
S uy ra \(p+1⋮4;p-1⋮2=>\left(p+1\right)\left(p-1\right)⋮8\)
Do P là snt lẻ > 3 => P sẽ có dạng 3k+1 hoặc 3k+2
rồi thay vồ => đpcm
\(x^2+xy-2019x-2020y-2021=x^2+xy+x-\left(2020x+2020y+2020\right)-1\)
\(=x\left(x+y+1\right)-2020\left(x+y+1\right)-1=\left(x-2020\right)\left(x+y+1\right)-1\)
làm tắt xíu :))
ta co (x-1)1000 va (x-2)1000 luon >=0
=>(x-1) hoac (x-2)=0;1;-1
tai(x-1)=0<=>x=1=>(x-2)=-1
tai(x-2)=0=>x=2 va (x-1)=1
vay ngiem cua phuong trinh tren la:1va2