Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1.5\right)^8+\left(2.7-y\right)^{10}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1.5=0\\2.7-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1.5\\y=2.7\end{matrix}\right.\)
Vậy : phương trình có cặp nghiệm \(\left(x,y\right)=\left(-1.5,2.7\right)\)
(x+1,5)8+(2,7-y)10=0
⇒\(\left[{}\begin{matrix}\left(x+1,5\right)^8\\\left(2,7-y\right)^{10}\end{matrix}\right.=0\)
⇒\(\left[{}\begin{matrix}x+1,5=0\\2,7-y=0\end{matrix}\right.\) ⇒\(\left[{}\begin{matrix}x=0-1,5\\y=2,7-0\end{matrix}\right.\) ⇒\(\left[{}\begin{matrix}x=-1,5\\y=2,7\end{matrix}\right.\)
\(\left|x-1,5\right|+\left|2,5+x\right|=0\)
\(\Rightarrow\left|x-1,5\right|\ge0\)
\(\Rightarrow\left|2,5-x\right|\ge0\)
Nên : + ) \(x-1,5=0\)
\(\Leftrightarrow x=1,5\)
+ ) \(2,5-x=0\)
\(\Leftrightarrow x=2,5\)
Ta có : \(1,5+2,5\ne0\)
Vậy x vô nghiệm .
\(\)\(\left|x-1,5\right|+\left|2,5-x\right|=0\)
Với mọi \(x\in R\) thì:
\(\left\{{}\begin{matrix}\left|x-1,5\right|\ge0\\\left|2,5-x\right|\ge0\end{matrix}\right.\) \(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix} \left|x-1,5\right|=0\\ \left|2,5-x\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\)
Khi đó không tồn tại giá trị x
\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{6}\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\sqrt{\dfrac{1}{6}}\\x+\dfrac{1}{2}=-\sqrt{\dfrac{1}{6}}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}+\sqrt{\dfrac{1}{6}}\\x=\dfrac{1}{2}-\sqrt{\dfrac{1}{6}}\end{matrix}\right.\)
\(\sqrt{\dfrac{1}{6}=?}\)
mk ko hiểu Linh Nguyễn
mk chưa hk đến căn
a) \(\left|3,5-x\right|=1,3\)
\(\Rightarrow\left[{}\begin{matrix}3,5-x=1,3\\3,5-x=-1,3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3,5-1,3\\x=3,5+1,3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2,2\\x=4,8\end{matrix}\right.\)
b) \(1,6-\left|x-0,2\right|=0,4\)
\(\Rightarrow\left|x-0,2\right|=1,2\)
\(\Rightarrow\left[{}\begin{matrix}x-0,2=1,2\\x-0,2=-1,2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1,2+0,2\\x=-1,2+0,2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1,4\\x=-1\end{matrix}\right.\)
\(\left|3,5-x\right|=1,3\)
\(\Rightarrow\left[{}\begin{matrix}3,5-x=1,3\Rightarrow x=2,2\\3,5-x=-1,3\Rightarrow x=4,8\end{matrix}\right.\)
\(1,6-\left|x-0,2\right|=0,4\)
\(\Rightarrow\left|x-0,2\right|=1,2\)
\(\Rightarrow\left[{}\begin{matrix}x-0,2=1,2\Rightarrow x=1,4\\x-0,2=-1,2\Rightarrow x=-1\end{matrix}\right.\)
\(\left|x-1,5\right|+\left|2,5-x\right|=0\)
\(\left\{{}\begin{matrix}\left|x-1,5\right|\ge0\\\left|2,5-x\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-1,5\right|=0\Rightarrow x=1,5\\\left|2,5-x\right|=0\Rightarrow x=2,5\end{matrix}\right.\)
\(1,5\ne2,5\Rightarrow x\in\varnothing\)
a, A = 3,5 + |x - 2017| - 9
= -5,5 + |x - 2017|
Ta có : |x - 2017| \(\ge0\Rightarrow-5,5+\left|x-2017\right|\ge-5,5\)
Dấu ''='' xảy ra <=> x - 2017 = 0 <=> x = 2017
Vậy GTNN của A = -5,5 <=> x = 2017
@Cô Bé Dễ Thương
Trả lời
Mk nghĩ bạn có thể tham khảo ở CHTT nha !
Có đáp án của câu b;c và d đó.
Đừng ném đá chọi gạch nha !
a) vi(x^2+5)(x^2-25)=0
=>x^2+5=0 hoac x^2-25=0
=>x=...hoac x=...(tu lam)
b)(x-2)(x+1)=0
=>x-2=0 hoac x+1=0
=>x=2 hoac x=-1
c)(x^2+7)(x^2-49)<0
=>x^2+7va x^2-49 trai dau
ma x^2+7>=7=>x^2-49<0=>x<7 va x>-7
con lai tuong tu
tu lam nhe nho k nha
Ta có : a mũ chẵn \(\ge\)0.
=>\(2\times y-8=0\)
=> 2 x y = 8
=> y = 4
Ta có : 2x-y = 0.
=> 2x=y=8
=>x= 4
10 - { [ ( x : 3 + 17 ) : 10 + 3 : 24 ] : 10 } = 5
[ ( x : 3 + 17 ) : 10 + 3 : 24 ] : 10 = 10 - 5 = 5
( x : 3 + 17 ) : 10 + 3 : 24 = 5 x 10
( x : 3 + 17 ) : 10 + 48 = 50
( x : 3 + 17 ) : 10 = 50 - 48
( x : 3 + 17 ) : 10 = 2
x : 3 + 17 = 2 x 10
x : 3 + 17 = 20
x : 3 = 20 - 17 = 3
x = 3 x 3 = 9
a) [(2x+14) : 4 - 3] : 2 = 1
(2x+14) : 4 - 3 = 1/2
(2x+14) : 4 = 1/2 + 3
(2x+14) : 4 = 7/2
2x+14 = 7/2 . 1/4
2x = 7/8 - 1/4
2x = 5/8
x= 5/8.1/2
x= 5/16
theo tính chất của trị tuyệt đối
=> |x-1,5| và |2,5-x| >= 0
nếu lớn hơn 0 thì ko thỏa mãn
=> phải =0
=>
=>x thuộc {1,5; 2,5}
\(\left|x-1,5\right|+\left|2,5-x\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-1,5=0\\2,5-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=1,5\\x=2,5\end{cases}}}\)
@@@@@