\(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2022

\(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)\)

\(=\sqrt{18}-\sqrt{12}+2\sqrt{3}-2\sqrt{2}\)

\(=3\sqrt{2}-2\sqrt{3}+2\sqrt{3}-2\sqrt{2}\)

\(=\sqrt{2}\)

a) Ta có: \(\left(\sqrt{6}+\sqrt{2}\right)\cdot\left(\sqrt{3}-2\right)\cdot\left(\sqrt{2+\sqrt{3}}\right)\)

\(=\sqrt{2}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\cdot\sqrt{2+\sqrt{3}}\)

\(=\sqrt{4+2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)

\(=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)

\(=\left|\sqrt{3}+1\right|\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)

\(=\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)(Vì \(\sqrt{3}>1>0\))

\(=\left(4+2\sqrt{3}\right)\cdot\left(\sqrt{3}-2\right)\)

\(=2\cdot\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)\)

\(=2\cdot\left(3-4\right)\)

\(=-2\)

b) Ta có: \(\sqrt{2}\cdot\left(\sqrt{2-\sqrt{3}}\right)\cdot\left(\sqrt{3}+1\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)

\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\cdot\left(\sqrt{3}+1\right)\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}\cdot\left(\sqrt{3}+1\right)\)

\(=\left|\sqrt{3}-1\right|\cdot\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)(Vì \(\sqrt{3}>1\))

\(=3-1=2\)

c) Ta có: \(\left(\sqrt{10}-\sqrt{6}\right)\cdot\left(\sqrt{4-\sqrt{15}}\right)\)

\(=\sqrt{2}\cdot\sqrt{4-\sqrt{15}}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)(Vì \(\sqrt{5}>\sqrt{3}\))

\(=8-2\sqrt{15}\)

d) Ta có: \(\left(\sqrt{3}-\sqrt{12}\right)\cdot\left(\sqrt{5+2\sqrt{6}}\right)\)

\(=\sqrt{3}\cdot\left(1-2\right)\cdot\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)

\(=-\sqrt{3}\cdot\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=-\sqrt{3}\cdot\left|\sqrt{3}+\sqrt{2}\right|\)

\(=-\sqrt{3}\cdot\left(\sqrt{3}+\sqrt{2}\right)\)(Vì \(\sqrt{3}>\sqrt{2}>0\))

\(=-3-\sqrt{6}\)

e) Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\cdot\left(2+\sqrt{3}\right)\)

\(=\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\cdot\left(2+\sqrt{3}\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)

\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)

\(=\left|\sqrt{3}-1\right|\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)\left(\sqrt{3}+2\right)\)(Vì \(\sqrt{3}>1\))

\(=\frac{\left(4-2\sqrt{3}\right)\left(4+2\sqrt{3}\right)}{2}\)

\(=\frac{16-12}{2}=\frac{4}{2}=2\)

f) Ta có: \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+2\cdot2\cdot\sqrt{3}+3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left|2+\sqrt{3}\right|}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)(Vì \(2>\sqrt{3}>0\))

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{25-2\cdot5\cdot\sqrt{3}+3}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left|5-\sqrt{3}\right|}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)(Vì \(5>\sqrt{3}\))

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+\sqrt{25}}\)

\(=\sqrt{4+5}=\sqrt{9}=3\)

20 tháng 7 2017

a) \(\sqrt{(3-2\sqrt{2})^2}+\sqrt{(3+2\sqrt{2})^2}=3-2\sqrt{2}+3-2\sqrt{2}=6\)

b\(\sqrt{(5-2\sqrt{6})^2}+\sqrt{(5+2\sqrt{6})^2}=5-2\sqrt{6}+5+2\sqrt{6}=10 \)

các ý còn lại làm tương tự

20 tháng 7 2017

hình như ở câu a) chỗ sau dấu bằng đầu tiên bạn bị sai dấu trừ cuối cùng

13 tháng 6 2019

a/ \(\sqrt{\left(\frac{1}{\sqrt{2}}-\frac{1}{2}\right)^2}=\) \(|\frac{1}{\sqrt{2}}-\frac{1}{2}|\)

                                           \(=|\frac{\sqrt{2}-1}{2}|\)

                                           \(=\frac{\sqrt{2}-1}{2}\)

các câu còn lại tương tự nha

chúc bn học tốt

12 tháng 11 2017

\(f,\sqrt{\dfrac{3-\sqrt{5}}{2-\sqrt{3}}}\\ =\sqrt{\dfrac{\left(3-\sqrt{5}\right)\left(2+\sqrt{3}\right)}{4-3}}\\ =\sqrt{\left(3-\sqrt{5}\right)\left(2+\sqrt{3}\right)}\\ =\sqrt{\dfrac{\left(6-2\sqrt{5}\right)\left(4+2\sqrt{3}\right)}{4}}\\ =\dfrac{\left(\sqrt{5}-1\right)\left(\sqrt{3}+1\right)}{2}\)

12 tháng 11 2017

\(a,\sqrt{3+\sqrt{5}}\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)\\ =\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{2}\left(\sqrt{5}+1\right)\\ =\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}.\sqrt{6-2\sqrt{5}}.\left(\sqrt{5}+1\right)\\ =\sqrt{9-5}.\sqrt{\left(\sqrt{5}-1\right)^2}.\left(\sqrt{5}+1\right)\\ =2\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\\ =2.4\\ =8\)

17 tháng 7 2018

a,( √6+2)(√3-√2)

<=> ( √2√3+2)(√3-√2)

<=> √2(√3+√2)(√3-√2)

<=> √2( (√3)2-(√2)2) = √2

b, (√3+1)2-2√3+4

<=> (√3)+2√3 +1 -2√3+4 =8

c, (1+√2-√3)(√2+√3)

<=>√2+√3+(√2)2+√6-√6-(√3)2

<=> √2+√3-1

d, √3(√2-√3)2-(√3+√2)

<=> √3( 2-2√6+3)-√3-√2

<=> 5√3-2√18-√3-√2

<=> 4√3-√2(√36-1)

<=> 4√3 - 3√2

e, (1+2√3-√2)(1+2√3+√2)

<=> (1+2√3)2-(√2)2

<=> (1+4√3+(2√3)2)-2

<=> 1+4√3+12-2= 11+4√3

g, (1-√3)2(1+2√3)2

<=>(1-2√3+3)(1+4√3+12)

<=>( 4-2√3)(13+4√3)

<=> 52+16√3-26√3-24

<=> -10√3+28

3 tháng 9 2019

a) \(\sqrt{3^2}-\sqrt{7^2}+\sqrt{\left(-1\right)^2}=|3|-|7|+|-1|=3-7+1=-3\)

b) \(-2\sqrt{\left(-2\right)^2}+\sqrt{\left(-5\right)^2}+\sqrt{3^2}=-2|2|+|-5|+\left|3\right|=-4+5+3=4\)

c) \(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}=\left|2-\sqrt{2}\right|+\left|2+\sqrt{2}\right|=2-\sqrt{2}+2+\sqrt{2}=4\)

d) \(\sqrt{\left(3\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}=\left|3\sqrt{2}\right|-\left|1-\sqrt{2}\right|=3\sqrt{2}-\sqrt{2}+1=2\sqrt{2}+1\)

e) \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{2}+1\right)^2}=\left|\sqrt{2}-1\right|+\left|\sqrt{2}+1\right|=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)

f) \(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}-2\right|+\left|\sqrt{5}+2\right|=\sqrt{5}-2+\sqrt{5}+2=2\sqrt{5}\)

g) \(\sqrt{9-4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{9-2\sqrt{8}}+\sqrt{2-2\sqrt{2}.3+9}=\sqrt{\left(\sqrt{8}-1\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}=\sqrt{8}-1+3-\sqrt{2}=2-\sqrt{2}+\sqrt{8}\)

h) \(\sqrt{12+8\sqrt{2}}+\sqrt{6-4\sqrt{2}}=\sqrt{12+2\sqrt{4}\sqrt{8}}+\sqrt{6-2\sqrt{2}\sqrt{4}}=\sqrt{\left(\sqrt{4}+\sqrt{8}\right)^2}+\sqrt{\left(\sqrt{4}-\sqrt{2}\right)^2}=\sqrt{4}+\sqrt{8}+\sqrt{4}-\sqrt{2}\)

k) \(\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=\left(2-\sqrt{3}\right)\sqrt{\left(\sqrt{3}+2\right)^2}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)