Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7,
\(\Leftrightarrow x=\sqrt{x+2}\left(\frac{\sqrt{x}}{1+\sqrt{1-\sqrt{x}}}\right)^2\)
\(\Leftrightarrow x=\frac{\sqrt{x+2}.x}{2-\sqrt{x}+2\sqrt{1-\sqrt{x}}}\Leftrightarrow\frac{\sqrt{x+2}}{2-\sqrt{x}+2\sqrt{1-\sqrt{x}}}=1\)
đến đây tự làm
7 đề như tớ
8. (x-1)^2 +\(x\sqrt{x-\frac{1}{x}}\)
9. \(\sqrt{1+x}+\sqrt{3-3x}=\sqrt{4x^2+1}\)
Bài 42 , Có \(m=\sqrt[3]{4+\sqrt{80}}-\sqrt[3]{\sqrt{80}-4}\)
\(\Rightarrow m^3=4+\sqrt{80}-\sqrt{80}+4-3m\sqrt[3]{\left(4+\sqrt{80}\right)\left(\sqrt{80-4}\right)}\)
\(\Leftrightarrow m^3=8-3m\sqrt[3]{80-16}\)
\(\Leftrightarrow m^3=8-3m\sqrt[3]{64}\)
\(\Leftrightarrow m^3=8-12m\)
\(\Leftrightarrow m^3+12m-8=0\)
Vì vậy m là nghiệm của pt \(x^3+12x-8=0\)
Bài 44, c, \(D=\sqrt[3]{2+10\sqrt{\frac{1}{27}}}+\sqrt[3]{2-10\sqrt{\frac{1}{27}}}\)
\(\Rightarrow D^3=2+10\sqrt{\frac{1}{27}}+2-10\sqrt{\frac{1}{27}}+3D\sqrt[3]{\left(2+10\sqrt{\frac{1}{27}}\right)\left(2-10\sqrt{\frac{1}{27}}\right)}\)
\(\Leftrightarrow D^3=4+3D\sqrt[3]{4-\frac{100}{27}}\)
\(\Leftrightarrow D^3=4+3D\sqrt[3]{\frac{8}{27}}\)
\(\Leftrightarrow D^3=4+2D\)
\(\Leftrightarrow D^3-2D-4=0\)
\(\Leftrightarrow D^3-4D+2D-4=0\)
\(\Leftrightarrow D\left(D^2-4\right)+2\left(D-2\right)=0\)
\(\Leftrightarrow D\left(D-2\right)\left(D+2\right)+2\left(D-2\right)=0\)
\(\Leftrightarrow\left(D-2\right)\left[D\left(D+2\right)+2\right]=0\)
\(\Leftrightarrow\left(D-2\right)\left(D^2+2D+2\right)=0\)
\(\Leftrightarrow\left(D-2\right)\left[\left(D+1\right)^2+1\right]=0\)
Vì [....] > 0 nên D - 2 = 0 <=> D = 2
Ý d làm tương tự nhá
Điều kiện xác định:
\(x\ge1\)
ta có: \(\left(\sqrt{5x-1}+\sqrt{x-1}\right)\left(3x-1-\sqrt{5x^2-6x+1}\right)=4x\)
\(\Leftrightarrow\)\(\left(\sqrt{5x-1}+\sqrt{x-1}\right)\left(\frac{5x-1+x-1}{2}-\sqrt{\left(5x-1\right)\left(x-1\right)}\right)=\left(5x-1\right)-\left(x-1\right)\)
Đặt \(\hept{\begin{cases}\sqrt{5x-1}=a\\\sqrt{x-1}=b\end{cases}}\)ta có \(\left(a+b\right)\left(\frac{a^2+b^2}{2}-ab\right)=a^2-b^2\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(a-b\right)^2}{2}=\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow\orbr{\begin{cases}\left(a-b\right)\left(a+b\right)=0\\a-b=2\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}5x-1=x-1\\\sqrt{5x-1}-\sqrt{x-1}=2\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{5x-1}=\sqrt{x-1}+2\end{cases}}\)
phương trình dưới ta bình phương hai vế được
\(5x-1=x-1+4\sqrt{x-1}+4\Leftrightarrow4\left(x-1\right)=4\sqrt{x-1}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-1=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
kết hợp điều kiện ta được hai nghiệm x=1 hoặc x=2
day ma la toan lop 1?