\(\left(n^5-5n^3+4n\right)⋮120\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2018

Tham khảo tại đây nha!

Câu hỏi của Monkey D.Luffy - Toán lớp 7 - Học toán với OnlineMath

17 tháng 2 2018

tăng cậu nè

Violympic toán 8Violympic toán 8Violympic toán 8

17 tháng 11 2017

Ta có :n5_ 5n3+4n

=n(n4-5n2+4)=n(n4-4n2-n2+4)=n(n2(n2-4)-(n2-4))

=n(n2_ 4)(n2-1)=(n-2)(n-1)n(n+1)(n+2)

Vì tích trên là tích của 5 số tự nhiên liên tiếp nên tích này chia hết cho 3,5,8 . Mà 3,5 và 8 nguên tố cùng nhau và 3*5*8=120

⇔(n-2)(n-1)n(n+1)(n+2) ⋮ 120 ∀ n ϵ N⇔n5-5n3+4n⋮120 ∀ n ϵ N.

28 tháng 11 2019

x<y

3) x=7

28 tháng 11 2019

1)Ta co

n5-5n3+4n

=n(n4-5n2+4)

=n(n4-n2-4n2+4)

=n(n2(n2-1)-4(n2-1)

=n(n2-4)(n2-1)

=n(n-1)(n+1)(n+2)(n-2)

vi n(n-1)(n+1)(n-2)(n+2) la h 5 so tu nhien lien tiep nen chia het cho 3,5,8 ma 3.5.8=120

=>n5-5n3+4n chia het 120

9 tháng 8 2017

Gọi A= n^5-5n^3+4n 

Ta có : n^5-5n^3+4n

=n(n^4-5n^2+4)

=n(n^4-4n^2-n^2+4)

=n{(n^2-4)(n^2-1)}

= n(n+1)(n-1)(n+2)(n-2)           

Vì A là 5 số tự nhiên liên tiếp nên A chia hết cho cả 2,3,4,5. Mà 2.3.4.5=120

=>A chia hết cho 120        

4 tháng 11 2016

A=n5-5n3+4n

 =n(n4-5n2+4)

 =n(n4-4n2-n2+4)

 =n[n2(n2-1)-4(n2-1)]

 =n(n2-4)(n2-1)

 =n(n-1)(n+1)(n+2)(n-2)

A là tích 5 số tự nhiên liên tiếp nên A chia hết cho 5

A có 1 số chia hết cho 3 nên A chia hết cho 3

A là tích 2 số chẵn liên tiếp nên A chia hết cho 8

Suy ra: A chia hết cho (3;5;8)

Suy ra: A chia hết cho 120

Suy ra: n5-5n3+4n chia hết cho 120

1 tháng 10 2016

n5-5n3+4n=n(n4-5n2+4)

=n(n4-4n2-n2+4)=n[n2(n2-4)-(n2-4)]

=n[(n2-4)(n2-1)]

=n(n-2)(n+2)(n-1)(n+2)=(n-2)(n-1)n(n+1)(n+2)

Vì tích trên là tích 5 SN liên tiếp nên chia hết cho 4,5,6

Mà (4,5,6)=1

=>tích trên chia hết cho 120(đpcm)

Bài 2: 

a: Để A là số nguyên thì \(3n^3+10n^2-5⋮3n+1\)

\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)(do n là số nguyên)

b: Để B là số nguyên thì \(n^3-4n^2+5n-1⋮n-3\)

\(\Leftrightarrow n^3-3n^2-n^2+3n+2n-6+5⋮n-3\)

\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)

25 tháng 9 2018

a/ n thuộc Z nha

a: \(=3n^4-3n^3-11n^3+11n^2+10n^2-10n\)

\(=\left(n-1\right)\left(3n^3-11n^2+10n\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n-5\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n+3-8\right)\)

\(=3n\left(n-1\right)\left(n+1\right)\left(n-2\right)-8n\left(n-2\right)\left(n-1\right)\)

Vì n;n-1;n+1;n-2 là 4 số liên tiếp

nên n(n-1)(n+1)(n+2) chia hết cho 4!=24

mà -8n(n-2)(n-1) chia hết cho 24

nên A chia hết cho 24

b: \(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)

Vì đây là 5 số liên tiếp

nên \(n\left(n-1\right)\cdot\left(n-2\right)\left(n+1\right)\left(n+2\right)⋮5!=120\)