\(\left(I\right)\hept{\begin{cases}x+my=m+1\left(1\right)\\mx+y=3m-1\left(2\right)\end{cases}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2020

hpt có nghiệm duy nhất \(\Leftrightarrow\frac{a}{a'}\ne\frac{b}{b'}\Leftrightarrow\frac{1}{m}\ne\frac{m}{1}\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)

ta giải hpt trên:

\(\hept{\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}\Leftrightarrow\hept{\begin{cases}mx+m^2y=m^2+m\\mx+y=3m-1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m^2-1\right)y=\left(m-1\right)^2\\x+my=m+1\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{m-1}{m+1}\\x=\frac{3m+1}{m+1}\end{cases}}}\)

đặt P=x.y=\(\frac{3m^2-2m-1}{m^2+2m+1}\)\(\Rightarrow\left(3-P\right)m^2-2\left(1+P\right)m-1-P=0\)

\(\Delta'=P^2+2P+1+\left(3-P\right)\left(1+P\right)=4P+4\)

pt có nghiệm \(\Leftrightarrow4P+4\ge0\Leftrightarrow P\ge-1\)

vậy GTNN là -1 khi m=0.

2 tháng 3 2020

\(\hept{\begin{cases}\left(m-1\right)x-y=2\\mx+y=m\end{cases}}\) ( \(m\ne0;m\ne1\))

\(\Leftrightarrow\hept{\begin{cases}mx-x-y=2\\mx=m-y\end{cases}\Leftrightarrow\hept{\begin{cases}m-2y-x=2\\y=m-mx\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=m-m\left(m-2y-2\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=3m-m^2+2my\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=\frac{3m-m^2}{1-2m}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-m-2}{1-2m}\\y=\frac{3m-m^2}{1-2m}\end{cases}}\)

Theo bài ra ta có : 2x + y < 0 \(\Leftrightarrow\frac{2\left(-m-2\right)}{1-2m}+\frac{3m-m^2}{1-2m}< 0\)

\(\Leftrightarrow\frac{-m^2+m-4}{1-2m}< 0\Leftrightarrow\frac{-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}}{1-2m}< 0\)

Ta có : \(-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}< 0\)\(\Rightarrow1-2m< 0\Rightarrow m>\frac{1}{2}\)

Vậy \(m>\frac{1}{2}\left(m\ne1\right)\)