\(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{x-9}\right)\):\(\left...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

\(B=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{\sqrt{x}+3}{\sqrt{x}-1}\right)\)

\(=\frac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)\(:\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\)\(\frac{x-1-x+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{2}\)

\(=\frac{\sqrt{x}+3}{2\sqrt{x}}\)

AH
Akai Haruma
Giáo viên
3 tháng 7 2019

Lời giải:

a)

\(=\frac{(\sqrt{x}+1)\sqrt{x}(\sqrt{x}-\sqrt{y}))\sqrt{x}+\sqrt{y})}{(x-y)x(\sqrt{x}+1)}=\frac{(\sqrt{x}+1)\sqrt{x}(x-y)}{(x-y)x\sqrt{x}+1)}=\frac{1}{\sqrt{x}}\)

b)

\(=\frac{(2-\sqrt{x}-\sqrt{x}-3)(2-\sqrt{x}+\sqrt{x}+3)}{1+2\sqrt{x}}=\frac{(-1-2\sqrt{x}).5}{2\sqrt{x}+1}=\frac{-5(2\sqrt{x}+1)}{2\sqrt{x}+1}=-5\)

4 tháng 7 2019

\(a,\frac{\left(\sqrt{x}+1\right)\cdot\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right)\sqrt{x}\left(x+1\right)}\)\(=\frac{\left(\sqrt{x}+1\right)\sqrt{x}\left(x-y\right)}{\left(x-y\right)\sqrt{x} \left(x+1\right)}\)\(=\frac{\sqrt{x}+1}{x+1}\)

\(b,\frac{\left(2-\sqrt{x}\right)^2-\sqrt{x}-3}{1+2\sqrt{x}}=\frac{4+x-4\sqrt{x}-\sqrt{x}-3}{1+2\sqrt{x}}=\frac{1+x-5\sqrt{x}}{1+2\sqrt{x}}\)

12 tháng 5 2017

a/ \(P=\left(\frac{3}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{x-1}\right):\left(\frac{x+2}{x+\sqrt{x}-2}-\frac{\sqrt{x}}{\sqrt{x}+2}\right).\)

\(P=\left(\frac{3}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2}{\sqrt{x^2}-1+\sqrt{x}-1}-\frac{\sqrt{x}}{\sqrt{x}+2}\right).\)

\(P=\left(\frac{3\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}}{\sqrt{x}+2}\right).\)

\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\)

\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\)

\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\)

\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{1}{\left(\sqrt{x}-1\right)}\right)\)

\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{\sqrt{x}-1}{1}\right)\)

=> \(P=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)}\)

b/ \(P=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)}=\sqrt{x}-1\)

<=> \(4\sqrt{x}=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)

<=> \(4\sqrt{x}=x-1\). Bình phương 2 vế, ta được:

<=> 16x=(x-1)2

<=> 16x=x2-2x+1

<=> x2-18x+1=0

\(\Delta'=81-1=80=>\sqrt{\Delta'}=4\sqrt{5}\)

=> \(x_1=9-4\sqrt{5}\)

\(x_2=9+4\sqrt{5}\)