Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}^2-...-\frac{1}{5}\right)\left(2,4.42-21.4,8\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)
=> \(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-...-\frac{1}{5}\right).0}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)= 0
Cũng khuya rồi , mình làm câu 1 thôi nhé !
\(\frac{2.5^{22}-9.5^{21}}{25^{10}}=\frac{2.5^{22}-9.5^{21}}{\left(5^2\right)^{10}}\)
\(\frac{5^{21}.\left(2.5-9\right)}{5^{20}}=5.\left(10-9\right)=5\)
f) \(\frac{3^3.\left(0,5\right)^5}{\left(1,5\right)^4}=\frac{3^3.\left(0,5\right)^5}{\left[3.\left(0,5\right)\right]^4}=\frac{3^3.\left(0,5\right)^5}{3^4.\left(0,5\right)^4}=\frac{0,5}{3}=\frac{1}{6}\)
b) \(\frac{2^3+3.2^6-4^3}{2^3+3^2}=\frac{2^3.\left(1+3.2^3-2^3\right)}{2^3+3^2}=\frac{2^3.17}{17}=2^3=8\)
Các phần còn lại tương tự, bạn tự làm nhé !
(*) Lưu ý ở những bài rút gọn có chứa lũy thừa thì bạn đưa số đó về số nguyên tố rồi thực hiện như bình thường .
VD : \(4^3=\left(2^2\right)^3=2^6\) ( đưa về số nguyên tố là 2 )
\(6^3=\left(2.3\right)^3=2^3.3^3\) ( đưa về tích hai số nguyên tố )
a) \(=\frac{\left(-2\right)^{10}}{\left(-2\right)^7}=\frac{\left(-2\right)^7.\left(-2\right)^3}{\left(-2\right)^7}=\left(-2\right)^3=-8\)
b) \(=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2.3}=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2.3}=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{12}.3^{10}.\left(3^2-2^{-11}.3^{-9}\right)}=\frac{6}{3^2-2^{-11}.3^{-9}}\)
\(=\frac{2.3}{3.\left(3-2^{-11}.3^{-10}\right)}=\frac{2}{3-2^{-11}.3^{-10}}\)
A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
\(=\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)
\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)
\(=\frac{3}{5}+\frac{2}{5}=1\)
b) B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6.8^4.3^5}-\frac{5^{10}.7^3:25^5.49}{\left(125.7\right)^3+5^9.14^3}\)
\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.7^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}-7^2}{5^9.7^3+5^9.7^3.2^3}\)
\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^2.\left(7-1\right)}{5^9.7^3\left(1+2^3\right)}\)
\(=\frac{1}{3.2}-\frac{5.2}{7.3}\)
\(=\frac{7}{3.2.7}-\frac{5.2.2}{7.3.2}\)
\(=\frac{7}{42}-\frac{20}{42}\)
\(=-\frac{13}{42}\)