\(\left(\frac{3}{\frac{4}{32}}x-1\right)5=243\)( Tất cả trên 32 nhé!  3 phần 4 nhân...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left(3:\dfrac{4}{32}\cdot x-1\right)^5=243\)

\(\Leftrightarrow\left(24x-1\right)^5=243\)

=>24x-1=3

=>24x=4

hay x=1/6

21 tháng 7 2019

\(\frac{2^{4-x}}{16^5}=32^6\)

=> \(\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)

=> \(\frac{2^{4-x}}{2^{20}}=2^{30}\)

=> \(2^{4-x}=2^{30}.2^{20}\)

=> \(2^{4-x}=2^{50}\)

=> 4  - x = 50

=> x = 4 - 50 = -46

\(\frac{3^{2x+3}}{9^3}=9^{14}\)

=> \(\frac{3^{2x+3}}{\left(3^2\right)^3}=\left(3^2\right)^{14}\)

=> \(\frac{3^{2x+3}}{3^6}=3^{28}\)

=> \(3^{2x+3}=3^{28}.3^6\)

=> \(3^{2x+3}=3^{34}\)

=> 2x + 3 = 34

=> 2x = 34 - 3

=> 2x = 31

=> x = 31/2

26 tháng 9 2018

\(a)\)\(\left(\frac{3}{5}\right)^{2x+1}=\frac{81}{625}\)

\(\Leftrightarrow\)\(\left(\frac{3}{5}\right)^{2x+1}=\left(\frac{3}{5}\right)^4\)

\(\Leftrightarrow\)\(2x+1=4\)

\(\Leftrightarrow\)\(x=\frac{3}{2}\)

Vậy \(x=\frac{3}{2}\)

\(b)\)\(\left(\frac{2}{3}\right)^x.\left(\frac{2}{3}\right)^3=\frac{32}{243}\)

\(\Leftrightarrow\)\(\left(\frac{2}{3}\right)^{x+3}=\left(\frac{2}{3}\right)^5\)

\(\Leftrightarrow\)\(x+3=5\)

\(\Leftrightarrow\)\(x=2\)

Vậy \(x=2\)

\(c)\)\(\left(2x-1\right)^2=\left(2x-1\right)^3\)

\(\Leftrightarrow\)\(\left(2x-1\right)^3-\left(2x-1\right)^2=0\)

\(\Leftrightarrow\)\(\left(2x-1\right)^2\left(2x-1-1\right)=0\)

\(\Leftrightarrow\)\(\left(2x-1\right)^2\left(2x-2\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(2x-1\right)^2=0\\2x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}}\)

Vậy \(x=\frac{1}{2}\) hoặc \(x=1\)

Chúc bạn học tốt ~ 

3 tháng 7 2019

a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)

=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)

=> \(\left|2-\frac{3}{2}x\right|=x+6\)

ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)

Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)

=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)

=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)

b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)

=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)

=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)

=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)

=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)

=> x = 1/4

hoặc x = 0 hoặc x = 1/2

5 tháng 1 2020

\(4^x+4^{x+3}=2160\)

\(4^x\left(1+4^3\right)=2160\)

\(4^x\cdot65=2160\)

\(4^x=2160\text{ : }65\)

\(4^x=33,2307692\)

\(\Rightarrow\text{ Đề sai}\)

5 tháng 1 2020

                                                Bài giải

\(2^{x-1}+5\cdot2^{x-2}=\frac{7}{32}\)

\(2^{x-2}\left(2+5\cdot1\right)=\frac{7}{32}\)

\(2^{x-2}\cdot7=\frac{7}{32}\)

\(2^{x-2}=\frac{7}{32}\text{ : }7\)

\(2^{x-2}=32\)

\(2^{x-2}=2^5\)

\(\Rightarrow\text{ }x-2=5\)

\(x=5+2\)

\(x=7\)

16 tháng 2 2020

1) \(\left(\frac{2x}{3}-3\right):\left(-10\right)=\frac{2}{5}\)

\(\Leftrightarrow-\frac{\frac{2x}{3}-3}{10}=\frac{2}{5}\)

\(\Leftrightarrow-\left(\frac{\frac{2x}{3}}{10}-\frac{3}{10}\right)=\frac{2}{5}\)

\(\Leftrightarrow-\left(\frac{2x}{3\times10}-\frac{3}{10}\right)=\frac{2}{5}\)

\(\Leftrightarrow-\left(\frac{2x}{30}-\frac{3}{10}\right)=\frac{2}{5}\)

\(\Leftrightarrow-\frac{x}{15}+\frac{3}{10}=\frac{2}{5}\)

\(\Leftrightarrow\frac{3}{10}-\frac{x}{15}=\frac{2}{5}\)

\(\Leftrightarrow-\frac{x}{15}=\frac{2}{5}-\frac{3}{10}\)

\(\Leftrightarrow-\frac{x}{15}=\frac{1}{10}\)

\(\Leftrightarrow-x=\frac{15}{10}\)

\(\Leftrightarrow-x=\frac{3}{2}\)

\(\Leftrightarrow x=-\frac{3}{2}\)

Vậy \(x=-\frac{3}{2}\)

16 tháng 2 2020

2) \(\left|2x-1\right|+1=4\)

\(\Leftrightarrow\left|2x-1\right|=3\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=4\\2x=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)

Vậy \(x\in\left\{2;-1\right\}\)