Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
1) Ta có: \(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\cdot\sqrt{6}-\left(\frac{5}{2}\sqrt{2}+12\right)\)
\(=\left(2\sqrt{3}-6\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}-\left(\sqrt{\frac{25}{4}\cdot2}+12\right)\)
\(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}-\left(\sqrt{\frac{50}{4}}+12\right)\)
\(=-12\sqrt{2}+12-\frac{5\sqrt{2}}{2}-12\)
\(=\frac{-24\sqrt{2}-5\sqrt{2}}{2}\)
\(=\frac{-29\sqrt{2}}{2}\)
2) Ta có: \(\frac{26}{2\sqrt{3}+5}-\frac{4}{\sqrt{3}-2}\)
\(=\frac{26\left(5-2\sqrt{3}\right)}{\left(5+2\sqrt{3}\right)\left(5-2\sqrt{3}\right)}+\frac{4}{2-\sqrt{3}}\)
\(=\frac{26\left(5-2\sqrt{3}\right)}{25-12}+\frac{4\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(=2\left(5-2\sqrt{3}\right)+4\left(2+\sqrt{3}\right)\)
\(=10-4\sqrt{3}+8+4\sqrt{3}\)
\(=18\)
3) ĐK để phương trình có nghiệm là: x≥0
Ta có: \(\sqrt{x^2-6x+9}=2x\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x\)
\(\Leftrightarrow\left|x-3\right|=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x\\x-3=-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3-2x=0\\x-3+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x-3=0\\3x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=3\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Vậy: S={1}
4) ĐK để phương trình có nghiệm là: \(x\ge\frac{1}{2}\)
Ta có: \(\sqrt{4x^2+1}=2x-1\)
\(\Leftrightarrow\left(\sqrt{4x^2+1}\right)^2=\left(2x-1\right)^2\)
\(\Leftrightarrow4x^2+1=4x^2-4x+1\)
\(\Leftrightarrow4x^2+1-4x^2+4x-1=0\)
\(\Leftrightarrow4x=0\)
hay x=0(loại)
Vậy: S=∅
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
\(ĐKXĐ:x\ge0\)
\(\left(\frac{2}{2-\sqrt{x}}+\frac{3+\sqrt{x}}{x-2\sqrt{x}}\right):\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right)\)
\(=\frac{-2\sqrt{x}}{x-2\sqrt{x}}:\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{4-x}\)
\(=\frac{-2\sqrt{x}}{x-2\sqrt{x}}:\frac{\left(4+4\sqrt{x}+x\right)-\left(4-4\sqrt{x}+x\right)+4x}{4-x}\)
\(=\frac{-2\sqrt{x}}{x-2\sqrt{x}}:\frac{8\sqrt{x}+4x}{4-x}\)
\(=\frac{-2\sqrt{x}}{x-2\sqrt{x}}.\frac{4-x}{8\sqrt{x}+4x}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-2\right)\left(2+\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}-2\right).2\sqrt{x}\left(4+2\sqrt{x}\right)}\)
\(=\frac{\left(2+\sqrt{x}\right)}{\sqrt{x}\left(4+2\sqrt{x}\right)}=\frac{1}{2\sqrt{x}}\)
mk ko kt lại nên sai từ dòng 2 r, bạn cộng thêm (3+căn x) vào r giải tương tự
= \(\left[\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right]:\frac{x-6\sqrt{x}+9}{\left(2-\sqrt{x}\right)\left(\sqrt{x}-3\right)}\)
= \(\left[\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}+\frac{4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right]:\frac{\left(\sqrt{x}-3\right)^2}{\left(2-\sqrt{x}\right)\left(\sqrt{x}-3\right)}\)
= \(\left[\frac{\left(2+\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}-\frac{\left(2-\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right]:\frac{\sqrt{x}-3}{2-\sqrt{x}}\)
= \(\left[\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{nt}\right]:nt\)
\(=\left[\frac{8\sqrt{x}+4x}{nt}\right]:nt\)
\(=\left[\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right]:nt\)
\(=\frac{4\sqrt{x}}{2-\sqrt{x}}.\frac{\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(=\frac{4\sqrt{x}}{\sqrt{x}-3}\)