Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu b:
\(\frac{21}{8}:\frac{5}{6}+\frac{1}{2}:\frac{5}{6}\)
= \(\frac{63}{20}+\frac{3}{5}\)
= \(\frac{15}{4}\)
\(\left(\frac{21}{8}+\frac{1}{2}\right):\frac{5}{6}\)
\(\frac{25}{8}:\frac{5}{6}\)
\(\frac{25}{8}.\frac{6}{5}\)
\(\frac{30}{8}\)
\(\frac{11}{9}+\frac{35}{18}\)
\(=\frac{19}{6}\)
\(\frac{22}{21}:\frac{1}{2}+\frac{25}{12}:\frac{1}{2}\)
\(\frac{44}{21}+\frac{25}{6}\)
\(\frac{263}{42}\)
(1-1/2).(1-1/3).(1-1/4).(1-1/5)=b/100
=> 1/2.2/3.3/4.4/5=b/100
=> 1/5=b/100
=> b=100:5=20
\(\left(X+\frac{1}{1.3}\right)+\left(X+\frac{1}{3.5}\right)+...+\left(X+\frac{1}{23.25}\right)=11.X+\)\(\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(\Leftrightarrow12X+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)+11X\)\(+\frac{\left(1+\frac{1}{3}+...+\frac{1}{81}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)}{2}\)
\(\Leftrightarrow X+\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{23}+\frac{1}{23}-\frac{1}{25}\right)=\frac{242}{243}:2\)
\(\Leftrightarrow X+\frac{12}{25}=\frac{121}{243}\)
\(\Leftrightarrow X=\frac{109}{6075}\)
Vậy X=109/6075
Chắc Sai kết quả chứ công thức đúng nha!!!...
Fighting!!!...
Đặt:
\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}=\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{25-23}{23.25}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}=1-\frac{1}{25}=\frac{24}{25}\)
=> \(A=\frac{12}{25}\)
Đặt \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)
=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)=1-\frac{1}{3^5}=\frac{242}{243}\)
=> \(2B=\frac{242}{243}\Rightarrow B=\frac{121}{243}\)
Giải phương trình:
\(\left(x+\frac{1}{1.3}\right)+\left(x+\frac{1}{3.5}\right)+...+\left(x+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)\)
\(12x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{242}\right)\)
\(12x+\frac{12}{25}=11x+\frac{121}{243}\)
\(12x-11x=\frac{121}{243}-\frac{12}{25}\)
\(x=\frac{109}{6075}\)
Ta có:
\(A=\left(x-\frac{1}{2}\right).\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1}-\frac{1}{10}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\frac{9}{10}=\frac{1}{3}\Leftrightarrow x-\frac{1}{2}=\frac{1}{3}.\frac{10}{9}\Leftrightarrow x=\frac{47}{54}\)
\(B=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{96.101}=\frac{1}{10.x}\)
\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{96.101}\right)=\frac{1}{10}-\frac{1}{x}\)
\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)=\frac{1}{10}-\frac{1}{x}\)
\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{1}{10}-\frac{1}{x}\Leftrightarrow B=\frac{1}{5}.\frac{100}{101}=\frac{1}{10}-\frac{1}{x}\)
\(\Leftrightarrow B=\frac{1}{x}=\frac{1}{10}-\frac{20}{101}=-\frac{99}{1010}\Leftrightarrow x=-\frac{1010}{99}\)
c) Sai đề nhé bạn vì không có kết quả nên không tìm được x.
d) \(\left(x-5\right).\left(10-9\frac{40}{41}\right):\left(1-\frac{81}{82}\right):\left(1-\frac{204}{205}\right)=2050\)
\(\Rightarrow\left(x-5\right).\frac{1}{41}.82.205=2050\)
\(\Rightarrow\left(x-5\right).2.205=2050\Leftrightarrow x-5=2050:410=5\Leftrightarrow x=10\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{7}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}=\frac{1}{7}\)
a ) \(x+x\times\frac{1}{3}\div\frac{2}{9}+x\div\frac{2}{7}=252\)
\(x\times1+x\times\frac{1}{3}\div\frac{2}{9}+x\div\frac{2}{7}=252\)
\(x\times1+x\times\frac{1}{3}\times\frac{9}{2}+x\times\frac{7}{2}=252\)
\(x\times1+x\times\frac{9}{6}+x\times\frac{7}{2}=252\)
\(x\times\left(1+\frac{9}{6}+\frac{7}{2}\right)=252\)
\(x\times6=252\)
\(x=252\div6\)
\(x=42\)
b ) \(\left(3\times x-0,8\right)\div x+14,5=15\)
\(\left(3\times x-0,8\right)\div x=15-14,5\)
\(\left(3\times x-0,8\right)\div x=0,5\)
\(0,8\div x=3-0,5\)
\(0,8\div x=2,5\)
\(x=0,8\div2,5\)
\(x=0,32\)
\(\frac{1995}{1996}.\frac{19961996}{19311931}.\frac{19311931}{19951995}=\frac{1995}{1996}.\frac{1996}{1931}.\frac{1931}{1995}=1\)
\(\frac{1313}{2121}.\frac{165165}{143143}.\frac{424242}{151515}=\frac{13}{21}.\frac{165}{143}.\frac{42}{15}=\frac{1}{1}.\frac{11}{11}.\frac{2}{1}=2\)
\(\frac{242}{363}+\frac{1616}{2121}=\frac{2}{7}.\frac{2015}{A}\)
\(\frac{11.11.2}{11.11.3}+\frac{101.16}{101.21}=\frac{2}{7}.\frac{2015}{A}\)
\(\frac{2}{3}+\frac{16}{21}=\frac{2}{7}.\frac{2015}{A}\)
\(\Rightarrow\frac{2}{7}.\frac{2015}{A}=\frac{10}{7}\)
\(\frac{2015}{A}=\frac{10}{7}:\frac{2}{7}\)
\(\frac{2015}{A}=5\)
\(A=2015:5\)
\(A=403\)
\(\left(\frac{242}{363}+\frac{1616}{2121}\right)=\frac{2}{7}.\frac{2015}{A}\)
\(\Leftrightarrow\left(\frac{2}{3}+\frac{16}{21}\right)=\frac{2}{7}.\frac{2015}{A}\)
\(\Leftrightarrow\frac{10}{7}=\frac{2}{7}.\frac{2015}{A}\)
\(\Leftrightarrow5=\frac{2015}{A}\)
\(\Leftrightarrow A=403\)