Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk làm câu c cho nó dễ
c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010
=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010
=1-1/x+1=2009/2010
=1/x+1=1-2009/2010
=1/x+1=1/2010
=) x+1=2010
x =2010-1
x =2009
\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x=-\frac{6}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
_Tần vũ_
\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)
\(\Leftrightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(\Leftrightarrow3x=\frac{1}{6}\)
\(\Leftrightarrow x=\frac{1}{18}\)
_Tần Vũ_
\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)
\(\Leftrightarrow\frac{11}{15}x=\frac{2}{5}\)
\(\Leftrightarrow x=\frac{2}{5}\div\frac{11}{15}=\frac{2.15}{5.11}=\frac{6}{11}\)
Vậy x = 6/11
a) \(\frac{1}{3}.x+\frac{2}{5}.\left(x-1\right)=0\)
\(\frac{1}{3}.x+\frac{2}{5}.x-\frac{2}{5}=0\)
\(x.\left(\frac{1}{3}+\frac{2}{5}\right)-\frac{2}{5}=0\)
\(x.\frac{11}{15}-\frac{2}{5}=0\)
\(x.\frac{11}{15}=\frac{2}{5}\)
\(x=\frac{2}{5}:\frac{11}{15}\)
\(x=\frac{6}{11}\)
b) \(3.\left(x-\frac{1}{2}\right)-5.\left(x+\frac{3}{5}\right)=x+\frac{1}{5}\)
\(3x-\frac{3}{2}-5x-3=x+\frac{1}{5}\)
\(3x-5x-\left(\frac{3}{2}+3\right)=x+\frac{1}{5}\)
\(-2x-\frac{9}{2}=x+\frac{1}{5}\)
\(\Rightarrow-2x-x=\frac{1}{5}+\frac{9}{2}\)
\(-3x=\frac{47}{10}\)
\(x=\frac{47}{10}:\left(-3\right)\)
\(x=\frac{-47}{30}\)
\(\left(-5\right)\left(x+\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(\Rightarrow-5x-1-\frac{1}{2}x+\frac{1}{3}-\frac{3}{2}x+\frac{5}{6}=0\)
\(\Rightarrow-7x+\frac{1}{6}=0\)
\(\Rightarrow x=\frac{1}{42}\)
Giải:
a) \(\frac{1}{5}-\frac{2}{3}+2x=\frac{1}{2}\)
\(\Leftrightarrow2x=\frac{1}{2}-\left(\frac{1}{5}-\frac{2}{3}\right)\)
\(\Leftrightarrow2x=\frac{1}{2}-\frac{-7}{15}\)
\(\Leftrightarrow2x=\frac{11}{15}\)
\(\Leftrightarrow x=\frac{11}{15}:2\)
\(\Leftrightarrow x=\frac{11}{30}\)
b) \(4\left(\frac{1}{3}-3\right)+\frac{1}{2}=\frac{5}{6}+x\)
\(\Leftrightarrow\frac{-61}{6}=\frac{5}{6}+x\)
\(\Leftrightarrow x=\frac{-61}{6}-\frac{5}{6}\)
\(\Leftrightarrow x=\frac{-66}{6}=-11\)
Đặt BT trong ngoặc đơn là A ta có
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(A=\frac{5A-A}{4}=\frac{1-\frac{1}{5^{100}}}{4}=\frac{5^{100}-1}{4.5^{100}}\)
=> \(Ax=1\Leftrightarrow\left(\frac{5^{100}-1}{4.5^{100}}\right)x=1\Leftrightarrow x=\frac{4.5^{100}}{5^{100}-1}\)
Đặt \(\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)=A\)
ta có: \(\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)=A\)
5A=5\(\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)\)
5A=\(1+\frac{1}{5}+\frac{1}{5^2}+..+\frac{1}{5^{101}}\)
5A-A=\(\left(1+\frac{1}{5}+\frac{1}{5^2}+..+\frac{1}{5^{101}}\right)-\)\(\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)\)
4A=1+\(\frac{1}{5^{101}}\)
A=\(\frac{1+\frac{1}{5^{101}}}{4}\)
ta có:
\(\frac{1+\frac{1}{5^{101}}}{4}\).x=1
\(\Rightarrow x=\frac{1+\frac{1}{5^{101}}}{4}:1=\frac{1+\frac{1}{5^{101}}}{4}\)