Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
Biển Cửa Lò, chùa Thiên mụ, núi Ngũ Hành Sơn, chùa Cầu Hội An, kinh thành Huế, đèo Hải Vân
🐼🐼🐼
Ta có:
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{2012}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{1006}\)
\(=\frac{1}{1007}+\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2012}+\frac{1}{2013}\left(1\right)\)
Mà \(P=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow S=P\Rightarrow\left(S-P\right)^{2013}=0^{2013}=0\)
Vậy...
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)x=\frac{2013}{1}+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}\)
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)x=\left(\frac{2012}{2}+1\right)+...+\left(\frac{2}{2012}+1\right)+\left(\frac{1}{2013}+1\right)+1\)
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)x=\frac{2014}{2}+...+\frac{2014}{2012}+\frac{2014}{2013}+\frac{2014}{2014}\)
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)x=2014.\left(\frac{1}{2}+...+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}\right)\)
\(x=\frac{2014.\left(\frac{1}{2}+...+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)
\(x=2014\)
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}.....+\frac{1}{2012}\right)\)
\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-........-\frac{1}{1006}\)
\(S=\frac{1}{1007}+\frac{1}{1008}+.......+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}\)
\(\Rightarrow\left(S-P\right)^2=\left(\frac{1}{1007}+\frac{1}{1008}+....+\frac{1}{2012}+\frac{1}{2013}-\frac{1}{1007}-\frac{1}{1008}-....-\frac{1}{2012}-\frac{1}{2013}\right)^2\)
\(\Rightarrow\left(S-P\right)^2=0\)
Vậy \(\left(S-P\right)^2=0\)
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(S=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1006}\right)\)
\(S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2013}\)
\(\Rightarrow S-P=0\)
\(\Rightarrow\left(S-P\right)^{2013}=0\)
Ta có: \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=2013+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=1+\left(1+\frac{2012}{2}\right)+...+\left(1+\frac{2}{2012}\right)+\left(1+\frac{1}{2013}\right)\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=\frac{2014}{2014}+\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2012}+\frac{2014}{2013}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)
\(\Rightarrow x=2014\)
Lưu ý: số 2013 ở dòng T2 được tách ra làm 2013 số 1
\(\left(1-\frac{1}{7}\right).\left(1-\frac{1}{8}\right).\left(1-\frac{1}{9}\right)......\left(1-\frac{1}{2011}\right)\)
\(=\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2010}{2011}\)
\(=\frac{6.7.8.9.....2010}{7.8.9.10.....2011}\)
\(=\frac{6}{2011}\)
...............................................