K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2022

ĐKXĐ: \(x\ne\pm1;x\ne0\)

a)\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)

\(=\left(\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)

\(=\dfrac{x^2+2x+1-\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}:\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)

\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}:\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)

\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}.\dfrac{5\left(x-1\right)}{2x}-\dfrac{x^2-1}{x^2+2x+1}\)

\(=\dfrac{10}{x+1}-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)^2}\)

\(=\dfrac{10}{x+1}-\dfrac{x-1}{x+1}\)

\(=\dfrac{11-x}{x+1}\)

b) \(A=\dfrac{11-x}{x+1}=2\)

\(\Leftrightarrow11-x=2\left(x+1\right)\)

\(\Leftrightarrow11-x=2x+2\)

\(\Leftrightarrow-x-2x=2-11\)

\(\Leftrightarrow-3x=-9\)

\(\Leftrightarrow x=3\left(nhận\right)\)

c) -Để \(A=\dfrac{11-x}{x+1}\in Z\) thì:

\(\left(11-x\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(12-x-1\right)⋮\left(x+1\right)\)

\(\Rightarrow12⋮\left(x+1\right)\)

\(\Rightarrow\left(x+1\right)\inƯ\left(12\right)\)

\(\Rightarrow\left(x+1\right)\in\left\{1;2;3;4;6;12;-1;-2;-3;-4;-6;-12\right\}\)

\(\Rightarrow x\in\left\{2;3;5;11;-2;-3;-4;-5;-7;-13\right\}\)

 

 

 

1 tháng 5 2022

em cảm ưn gất nhìuuuuu:33

25 tháng 2 2022

\(A=\left(\dfrac{1}{x^2-1}+\dfrac{1}{x+1}\right):\left(\dfrac{1}{x-1}-\dfrac{1}{x}\right)\)

\(\Rightarrow A=\left(\dfrac{1}{\left(x-1\right)\left(x+1\right)}+\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\right):\left(\dfrac{x}{x\left(x-1\right)}-\dfrac{x-1}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{1+x-1}{\left(x-1\right)\left(x+1\right)}:\dfrac{x-x+1}{x\left(x-1\right)}\)

\(\Rightarrow A=\dfrac{x}{\left(x-1\right)\left(x+1\right)}:\dfrac{1}{x\left(x-1\right)}\)

\(\Rightarrow A=\dfrac{x}{\left(x-1\right)\left(x+1\right)}.x\left(x-1\right)\)

\(\Rightarrow A=\dfrac{x^2}{x+1}\)

25 tháng 2 2022

đk : xkhác -1 ; 1 

\(A=\left(\dfrac{1+x-1}{\left(x+1\right)\left(x-1\right)}\right):\left(\dfrac{x-x+1}{x\left(x-1\right)}\right)=\dfrac{x}{\left(x+1\right)\left(x-1\right)}:\dfrac{1}{x\left(x-1\right)}=\dfrac{x^2}{x+1}\)

a: \(A=\dfrac{x^2+1+1}{x^2+1}:\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\)

\(=\dfrac{x^2+2}{x^2+1}\cdot\dfrac{\left(x-1\right)\left(x^2+1\right)}{\left(x-1\right)^2}=\dfrac{x^2+2}{x-1}\)

b: A nguyên

=>x^2-1+3 chia hết cho x-1

=>\(x-1\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{2;0;4;-2\right\}\)

21 tháng 1 2021

undefined

21 tháng 1 2021

Bổ sung phần c và d luôn:

c, C = \(\dfrac{2}{5}\)

\(\Leftrightarrow\) \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{2}{5}\)

\(\Leftrightarrow\) 5(x2 - 1) = 2(2x2 + 3)

\(\Leftrightarrow\) 5x2 - 5 = 4x2 + 6

\(\Leftrightarrow\) x2 = 11

\(\Leftrightarrow\) x2 - 11 = 0

\(\Leftrightarrow\) (x - \(\sqrt{11}\))(x + \(\sqrt{11}\)) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-\sqrt{11}=0\\x+\sqrt{11}=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\sqrt{11}\left(TM\right)\\x=-\sqrt{11}\left(TM\right)\end{matrix}\right.\)

d, Ta có: \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{x^2+\dfrac{3}{2}-\dfrac{5}{2}}{2\left(x^2+\dfrac{3}{2}\right)}\) = \(\dfrac{1}{2}\) - \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\)

C nguyên \(\Leftrightarrow\) \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\) nguyên \(\Leftrightarrow\) 5 \(⋮\) 4(x2 + \(\dfrac{3}{2}\))

\(\Leftrightarrow\) 4(x2 + \(\dfrac{3}{2}\)\(\in\) Ư(5)

Xét các TH:

4(x2 + \(\dfrac{3}{2}\)) = 5 \(\Leftrightarrow\) x2 = \(\dfrac{-1}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{1}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = -5 \(\Leftrightarrow\) x2 = \(\dfrac{-11}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{11}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = 1 \(\Leftrightarrow\) x2 = \(\dfrac{-5}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{5}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = -1 \(\Leftrightarrow\) x2 = \(\dfrac{-7}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{7}{4}\) = 0 (Vô nghiệm)

Vậy không có giá trị nào của x \(\in\) Z thỏa mãn C \(\in\) Z

Chúc bn học tốt! (Ko bt đề sai hay ko nữa :v)

28 tháng 12 2021

Bài 1:

\(a,ĐK:x\ne\pm5\\ b,P=\dfrac{x-5+2x+10-2x-10}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{1}{x+5}\\ c,P=-3\Leftrightarrow x+5=-\dfrac{1}{3}\Leftrightarrow x=-\dfrac{16}{3}\\ d,P\in Z\Leftrightarrow x+5\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Leftrightarrow x\in\left\{-6;-4\right\}\)

Bài 2:

\(a,\Leftrightarrow\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}=0\Leftrightarrow x\in\varnothing\\ b,\Leftrightarrow\dfrac{x\left(2-x\right)}{\left(x-2\right)\left(x+2\right)}=0\Leftrightarrow\dfrac{-x}{x+2}=0\Leftrightarrow x=0\)

10 tháng 1 2021

a) đặt mẫu chứng là x-2

1: Ta có: \(A=\left(\dfrac{x^2-16}{x-4}-1\right):\left(\dfrac{x-2}{x-3}+\dfrac{x+3}{x+1}+\dfrac{x+2-x^2}{x^2-2x-3}\right)\)

\(=\left(x+4-1\right):\left(\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}+\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}+\dfrac{-x^2+x+2}{\left(x-3\right)\left(x+1\right)}\right)\)

\(=\left(x+3\right):\dfrac{x^2+x-2x-2+x^2-9-x^2+x+2}{\left(x-3\right)\left(x+1\right)}\)

\(=\left(x+3\right):\dfrac{x^2-9}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+3\right)\left(x-3\right)\left(x+1\right)}{x^2-9}\)

\(=x+1\)

ĐKXĐ: \(x\notin\left\{4;3;-1\right\}\)

2: Để \(\dfrac{A}{x^2+x+1}\) nhận giá trị nguyên thì \(x+1⋮x^2+x+1\)

\(\Leftrightarrow x^2+x⋮x^2+x+1\)

\(\Leftrightarrow x^2+x+1-1⋮x^2+x+1\)

mà \(x^2+x+1⋮x^2+x+1\)

nên \(-1⋮x^2+x+1\)

\(\Leftrightarrow x^2+x+1\inƯ\left(-1\right)\)

\(\Leftrightarrow x^2+x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow x^2+x\in\left\{0;-2\right\}\)

\(\Leftrightarrow x^2+x=0\)(Vì \(x^2+x>-2\forall x\))

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

Vậy: Để \(\dfrac{A}{x^2+x+1}\) nhận giá trị nguyên thì x=0

30 tháng 12 2020

undefined

30 tháng 12 2020

ê này nhầm rồi kìa 

x = 1 (ktm đkxđ) lm s thay vào đc 

x + 1 = -10

=> x = -8 ?? =)))

chưa già đã lẫn là saoooo

ĐKXĐ: \(x\notin\left\{-1;2;-2\right\}\)

a) Ta có: \(A=\left(\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\dfrac{2x^2+4x-1}{x^3+1}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)

\(=\left(\dfrac{\left(x+1\right)^2}{x^2-x+1}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)

\(=\left(\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{\left(x-2\right)\left(x+2\right)}{3x\left(x+2\right)}\)

\(=\dfrac{x^3+3x^2+3x+1-2x^2-4x+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}:\dfrac{x-2}{3x}\)

\(=\dfrac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\dfrac{3x}{x-2}\)

\(=\dfrac{3x}{x-2}\)

b) Để A nguyên thì \(3x⋮x-2\)

\(\Leftrightarrow3x-6+6⋮x-2\)

mà \(3x-6⋮x-2\)

nên \(6⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(6\right)\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(x\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

Kết hợp ĐKXĐ, ta được:

\(x\in\left\{3;1;4;0;5;8;-4\right\}\)

Vậy: Để A nguyên thì \(x\in\left\{3;1;4;0;5;8;-4\right\}\)