\(\left(\dfrac{\sqrt{7}-1}{\sqrt{21}-\sqrt{3}}+\dfrac{\sqrt{3}-1}{\sqrt{21}-\sqrt{7}}\right)\tim...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

\(=\left[\dfrac{\sqrt{7}-1}{\sqrt{3}\left(\sqrt{7}-1\right)}+\dfrac{\sqrt{3}-1}{\sqrt{7}\left(\sqrt{3}-1\right)}\right]\cdot\dfrac{\sqrt{21}}{\sqrt{7}+\sqrt{3}}\\ =\left(\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{7}}\right)\cdot\dfrac{\sqrt{21}}{\sqrt{7}+\sqrt{3}}\\ =\dfrac{\sqrt{3}+\sqrt{7}}{\sqrt{21}}\cdot\dfrac{\sqrt{21}}{\sqrt{3}+\sqrt{7}}=1\)

7 tháng 11 2017

a)\(\dfrac{\sqrt{21}\left(\sqrt{7}-\sqrt{3}\right)}{\sqrt{7}-\sqrt{3}}+\dfrac{4\left(5+\sqrt{21}\right)}{4}-\dfrac{\sqrt{3}.\sqrt{2}.\sqrt{7}}{\sqrt{3}}\)=\(5+2\sqrt{21}-\sqrt{14}\)

c) (\(\sqrt{2-\sqrt{3}}.\sqrt{2+\sqrt{3}}\))+\(\sqrt{2}\left(\sqrt{2-\sqrt{3}}\right)\)=1+\(\sqrt{2\sqrt{2}-\sqrt{6}}\)

19 tháng 7 2018

undefined

19 tháng 7 2018

@con ga con giúp mình vs

16 tháng 7 2017

\(\dfrac{2}{1-\sqrt{2}}-\dfrac{2}{1+\sqrt{2}}\)

\(=\dfrac{2\left(1+\sqrt{2}\right)-2\left(1-\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}\)

\(=\dfrac{2+2\sqrt{2}-2+2\sqrt{2}}{1-2}=-4\sqrt{2}\)

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{2}\right)\)

\(=\left[-\dfrac{\sqrt{2}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}-\sqrt{5}\right]\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-3\)

\(\dfrac{2}{7+4\sqrt{3}}+\dfrac{2}{7-4\sqrt{3}}\)

\(=\dfrac{2\left(7-4\sqrt{3}\right)+2\left(7+4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)

\(=\dfrac{14-8\sqrt{3}+14+8\sqrt{3}}{49-48}\)

= 28

16 tháng 7 2017

\(\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{2}{3-\sqrt{5}}}\)

\(=\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{4}{6-2\sqrt{5}}}\)

\(=\dfrac{2}{\sqrt{5}+1}-\dfrac{2}{\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\dfrac{2\left(\sqrt{5}-1\right)-2\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)

\(=\dfrac{2\sqrt{5}-2-2\sqrt{5}-2}{5-1}\)

= - 1

\(\dfrac{4}{1-\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\)

\(=\dfrac{4\left(1+\sqrt{3}\right)}{1-3}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)}\)

\(=-2-2\sqrt{3}-\sqrt{3}=-2-3\sqrt{3}\)

\(\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)

\(=\dfrac{2}{4+\sqrt{6+2\sqrt{5}}}\) (nhân [căn 2] vào cả tử và mẫu)

\(=\dfrac{2}{4+\sqrt{\left(\sqrt{5}+1\right)^2}}\)

\(=\dfrac{2}{5+\sqrt{5}}=\dfrac{2\left(5-\sqrt{5}\right)}{25-5}=\dfrac{5-\sqrt{5}}{10}\)

a: \(=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)

b: \(=\left(-\sqrt{5}-2+\sqrt{5}-\sqrt{3}\right)\cdot\left(2\sqrt{3}+3\right)\)

\(=-\sqrt{3}\left(2+\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)

\(=-\sqrt{3}\left(7+4\sqrt{3}\right)=-7\sqrt{3}-12\)

c: \(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}=\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1\)

2 tháng 9 2017

b) \(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)

= \(\sqrt{3.4-3\sqrt{7}}-\sqrt{3.4+3\sqrt{7}}\)

= \(\sqrt{3.\left(4-\sqrt{7}\right)}-\sqrt{3.\left(4+\sqrt{7}\right)}\)

= \(\sqrt{3}.\sqrt{4-\sqrt{7}}-\sqrt{3}.\sqrt{4+\sqrt{7}}\)

= \(\sqrt{3}.\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)\)

\(\)\(-2,449\)

2 tháng 9 2017

\(\sqrt{\dfrac{13}{4}+\sqrt{3}}-\sqrt{\dfrac{7}{4}-\sqrt{3}}\)

= \(\sqrt{\dfrac{13}{4}+\dfrac{4\sqrt{3}}{4}}-\sqrt{\dfrac{7}{4}-\dfrac{4\sqrt{3}}{4}}\)

= \(\sqrt{\dfrac{13+4\sqrt{3}}{4}}-\sqrt{\dfrac{7-4\sqrt{3}}{4}}\)

= \(\dfrac{\sqrt{13+4\sqrt{3}}}{\sqrt{4}}-\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{4}}\)

= \(\dfrac{\sqrt{13+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}}{\sqrt{4}}\)

\(2,098\)

20 tháng 7 2017

a. \(\dfrac{3\sqrt{7}+7\sqrt{3}}{\sqrt{21}}=\dfrac{\sqrt{21}\left(\sqrt{3}+\sqrt{7}\right)}{\sqrt{21}}=\sqrt{7}+\sqrt{3}\)

b. \(\dfrac{2\sqrt{5}-4\sqrt{10}}{3\sqrt{10}}=\dfrac{\sqrt{10}\left(\sqrt{2}-4\right)}{3\sqrt{10}}=\dfrac{-4+\sqrt{2}}{3}\)

c. \(\dfrac{3-\sqrt{7}}{3+\sqrt{7}}-\dfrac{3+\sqrt{7}}{3-\sqrt{7}}=\dfrac{\left(3-\sqrt{7}\right)^2}{9-7}-\dfrac{\left(3+\sqrt{7}\right)^2}{9-7}=\dfrac{\left(3-\sqrt{7}-3-\sqrt{7}\right)\left(3-\sqrt{7}+3+\sqrt{7}\right)}{2}=\dfrac{-2\sqrt{7}.6}{2}=-6\sqrt{7}\)

a: \(=\sqrt{15}-3+\sqrt{15}=2\sqrt{15}-3\)

b: \(=\left(\sqrt{7}+\sqrt{3}-\sqrt{7}+\sqrt{3}\right)-2\sqrt{3}+2\)

\(=2\)

c: \(=\left(\sqrt{3}-\sqrt{2}\right)\cdot3\cdot\left(\sqrt{3}+\sqrt{2}\right)=3\)

30 tháng 8 2018

Câu a : \(\left(\sqrt{80}+\sqrt{20}\right):\sqrt{45}=\sqrt{80}:\sqrt{45}+\sqrt{20}:\sqrt{45}=\sqrt{\dfrac{16}{9}}+\sqrt{\dfrac{4}{9}}=\dfrac{4}{3}+\dfrac{2}{3}=\dfrac{6}{3}=2\)

Câu b : \(\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{18}+\sqrt{27}\right)=\sqrt{54}+\sqrt{81}-\sqrt{36}-\sqrt{54}=\sqrt{81}-\sqrt{36}=9-6=3\)

Câu c : \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}-\dfrac{6}{\sqrt{15+3}}=\dfrac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}-\dfrac{6}{\sqrt{18}}\)

\(=\sqrt{15}-\dfrac{6}{\sqrt{18}}=\dfrac{\sqrt{270}-6}{3\sqrt{2}}=\dfrac{3\sqrt{30}-6}{3\sqrt{2}}=\dfrac{3\left(\sqrt{30}-6\right)}{3\sqrt{2}}=\dfrac{\sqrt{30}-2}{\sqrt{2}}=\sqrt{15}-\sqrt{2}\)