K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

Đề bài là rút gọn hả bn?

30 tháng 7 2018

Ta có : \(\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\sqrt{ab}\right)\)\(\left(\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)=1

\(\left(\dfrac{\sqrt{a}^3+\sqrt{b}^3}{\sqrt{a}+\sqrt{b}}+\sqrt{ab}\right)\)\(\left(\dfrac{\sqrt{a}+\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right)^2\)=1

\(\left(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}+\sqrt{ab}\right)\)\(\dfrac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)=1

\(\left(a+b\right)\)\(\dfrac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)=1

\(\dfrac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}-1=0\)

\(\dfrac{a+b-a+\sqrt{ab}-b}{\left(\sqrt{a}-\sqrt{b}\right)^2}=0\)

\(\sqrt{ab}=0\)

\(\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)(thỏa mãn điều kiện)

Vậy a=0;b=0