Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
h) \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x+5^x.5^2=650\)
\(\Leftrightarrow5^x\left(1+25\right)=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow x=2\)
haizzz,đăng ít thôi,chứ nhìn hoa mắt quá =.=
bây định làm j ở chỗ này vậy??? có j ib ns vs nhao chớ sao ns ở đây
Giải:
\(\left(\dfrac{32}{243}\right)^x=\left(\dfrac{3}{2}\right)^{-1.}\)
\(\Leftrightarrow\left(\dfrac{2^5}{3^5}\right)^x=\left(\dfrac{3}{2}\right)^{-1}.\)
\(\Leftrightarrow\left[\left(\dfrac{2}{3}\right)^5\right]^x=\left(\dfrac{3}{2}\right)^{-1}.\)
\(\Leftrightarrow\left(\dfrac{2}{3}\right)^{5x}=\left(\dfrac{3}{2}\right)^{-1}.\)
\(\Leftrightarrow\left(\dfrac{2}{3}\right)^{5x}=\left(\dfrac{2}{3}\right)^4.\)
\(\Rightarrow5x=4\Rightarrow x=\dfrac{4}{5}.\)
Vậy.....
oái, nhầm òi, kết quả là:
\(\left(\dfrac{2}{3}\right)^{5x}=\left(\dfrac{2}{3}\right)^1\Rightarrow5x=1\Rightarrow x=\dfrac{1}{5}.\)
x = 1/5 cơ, bạn tự sửa nhé :))
a/ \(4\dfrac{1}{3}:\dfrac{x}{4}=6:0,3\)
\(\Leftrightarrow\dfrac{13}{3}:\dfrac{x}{4}=20\)
\(\Leftrightarrow\dfrac{52}{3x}=20\)
\(\Leftrightarrow x=\dfrac{13}{15}\)
Vậy..
b/ \(\left(x-1\right)^5=-32\)
\(\Leftrightarrow\left(x-1\right)^5=\left(-2\right)^5\)
\(\Leftrightarrow x-1=-2\)
\(\Leftrightarrow x=-1\)
Vậy..
c/ \(\left(2^3:4\right).2^{x+1}=64\)
\(\Leftrightarrow2.2^{x+1}=64\)
\(\Leftrightarrow2^{x+2}=2^6\)
\(\Leftrightarrow x+2=6\)
\(\Leftrightarrow x=4\)
Vậy..
d/ \(\left|3-2x\right|-3=-3\)
\(\Leftrightarrow\left|3-2x\right|=0\)
\(\Leftrightarrow3-2x=0\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy..
e/ \(\left|x+\dfrac{4}{5}\right|-\dfrac{1}{7}=0\)
\(\Leftrightarrow\left|x+\dfrac{4}{5}\right|=\dfrac{1}{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{4}{5}=\dfrac{1}{7}\\x+\dfrac{4}{5}=-\dfrac{1}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{23}{35}\\x=-\dfrac{33}{35}\end{matrix}\right.\)
Vậy..
a) ( x + 5 )3 = -64
x + 5 = - 4
x = - 4 - 5
x = -9
b) (2x - 3)2=9
2x - 3 = 3
2x = 3+3
2x = 6
x = 6 : 2
x = 3
e) \(\dfrac{8}{2x}=4\)
=> 4 . 2x = 8
8x =8
x = 8 : 8
x = 1
g) \(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{8}\)
\(\left(\dfrac{1}{2}\right)^{2x}:\left(\dfrac{1}{2}\right)^1=\dfrac{1}{8}\)
\(\left(\dfrac{1}{2}\right)^{2x}:\dfrac{1}{2}=\dfrac{1}{8}\)
\(\left(\dfrac{1}{2}\right)^{2x}=\dfrac{1}{8}.\dfrac{1}{2}\)
\(\left(\dfrac{1}{2}\right)^{2x}=\dfrac{1}{16}\)
\(\left(\dfrac{1}{2}\right)^{2x}=\left(\dfrac{1}{2}\right)^{2.2}\)
=> x = 2
h) \(\left(\dfrac{1}{2}\right)^2.x=\left(\dfrac{1}{2}\right)^5\)
\(\dfrac{1}{4}.x=\dfrac{1}{32}\)
x = \(\dfrac{1}{32}:\dfrac{1}{4}\)
x = \(\dfrac{1}{8}\)
i) \(\left(\dfrac{-1}{3}\right)x=\dfrac{1}{81}\)
\(x=\dfrac{1}{81}:\left(\dfrac{-1}{3}\right)\)
\(x=\dfrac{-1}{27}\)
a) (x + 5)3 = -64
=> (x + 5)3 = (-4)3
x + 5 = -4
x = -4 - 5
x = -9
b) (2x - 3)2 = 9
=> (2x - 3)2 = (\(\pm\)3)2
=> 2x - 3 = 3 hoặc 2x - 3 = -3
*2x - 3 = 3
2x = 3 + 3
2x = 9
x = \(\dfrac{9}{2}\)
*2x - 3 = -3
2x = -3 + 3
2x = 0
x = 0 : 2
x = 0
Vậy x \(\in\left\{\dfrac{9}{2};0\right\}\)
c) \(\dfrac{x}{\dfrac{4}{2}}=\dfrac{4}{\dfrac{x}{2}}\)
=> \(x.\dfrac{x}{2}=4.\dfrac{4}{2}\)
\(\dfrac{x}{2}=8\)
x = 8 : 2
x = 4
d) \(\dfrac{-32}{\left(-2\right)^n}=4\)
\(\Rightarrow\dfrac{\left(-2\right)^5}{\left(-2\right)^n}=\left(-2\right)^2\)
=> (-2)n . (-2)2= (-2)5
(-2)n = (-2)5 : (-2)2
(-2)n = (-2)3
Vậy n = 3
e) \(\dfrac{8}{2x}=4\)
=> 2x . 4 = 8
2x = 8 : 4
2x = 2
x = 1
g) \(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^3\)
2x - 1 = 3
2x = 3 + 1
2x = 4
x = 4 : 2
x = 2
h) \(\left(\dfrac{1}{2}\right)^2.x=\left(\dfrac{1}{2}\right)^5\)
\(x=\left(\dfrac{1}{2}\right)^5:\left(\dfrac{1}{2}\right)^2\)
\(x=\left(\dfrac{1}{2}\right)^3\)
\(x=\dfrac{1}{8}\)
i) \(\left(\dfrac{-1}{3}\right)x=\dfrac{1}{81}\)
\(x=\dfrac{1}{81}:\left(\dfrac{-1}{3}\right)\)
\(x=\left(\dfrac{-1}{3}\right)^4:\left(\dfrac{-1}{3}\right)\)
\(x=\left(\dfrac{-1}{3}\right)^3\)
\(x=\dfrac{-1}{27}\).
a, \(\dfrac{13}{32}+\dfrac{8}{24}+\dfrac{19}{32}+\dfrac{2}{3}\)
\(=\left(\dfrac{13}{32}+\dfrac{19}{32}\right)+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\)
\(=\dfrac{32}{32}+\dfrac{3}{3}=1+1=2\)
b, \(\dfrac{3}{4}.36\dfrac{1}{5}-\dfrac{3}{4}.2\dfrac{1}{5}\)
\(=\dfrac{3}{4}.\left(36\dfrac{1}{5}-2\dfrac{1}{5}\right)\)
\(=\dfrac{3}{4}.\left[\left(36-2\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)\right]\)
\(=\dfrac{3}{4}.34=\dfrac{102}{4}=26\)
Bài 2:
a: x=27/10:9/5=27/10*5/9=135/90=3/2
b: =>|x|=1,75
=>x=1,75 hoặc x=-1,75
c: =>\(2-x=\sqrt[3]{25}\)
hay \(x=2-\sqrt[3]{25}\)
d: =>3^x-1*6=162
=>3^x-1=27
=>x-1=3
=>x=4
a)\(16^x=32^8\)
\(\Rightarrow\left(2^4\right)^x=\left(2^5\right)^8\)
\(\Rightarrow2^{4x}=2^{40}\)
\(\Rightarrow4x=40\)
\(\Rightarrow x=10\)
b)\(4^x=32^{40}\)
\(\Rightarrow\left(2^2\right)^x=\left(2^5\right)^{40}\)
\(\Rightarrow2^{2x}=2^{200}\)
\(\Rightarrow2x=200\)
\(\Rightarrow x=100\)
c)\(\left(\dfrac{2}{3}\right)^x=\left(\dfrac{4}{9}\right)^4\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left[\left(\dfrac{2}{3}\right)^2\right]^4\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^8\)
\(\Rightarrow x=8\)
d)\(2^{3x+1}=32^2\)
\(\Rightarrow2^{3x+1}=\left(2^5\right)^2=2^{10}\)
\(\Rightarrow3x+1=10\)
\(\Rightarrow3x=9\)
\(\Rightarrow x=3\)
e)\(\left(2x-1\right)^3:7=49\)
\(\Rightarrow\left(2x-1\right)^3=343\)
\(\Rightarrow\left(2x-1\right)^3=7^3\)
\(\Rightarrow2x-1=7\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\)
a) Ta có: \(16^x=32^8\)
=> \(\left(2^4\right)^x=\left(2^5\right)^8\)
=> \(2^{4.x}=2^{5.8}\)
=> 4x = 40
=> x = 10
Vậy x =10
b) Ta có : \(4^x=32^{40}\)
=> \(\left(2^2\right)^x=\left(2^5\right)^{40}\)
=> \(2^{2x}=2^{5.40}\)
=> 2x = 200
=> x =100
Vậy x = 100
c) Ta có : \(\left(\dfrac{2}{3}\right)^x=\left(\dfrac{4}{9}\right)^4\)
=> \(\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^{2.4}\)
=> x = 8
Vậy x =8
d) Ta có : \(2^{3x+1}=32^2\)
=> \(2^{3x+1}=\left(2^5\right)^2\)
=> 3x+1 =5.2
=> 3x+1 = 10
=> 3x = 10-1=9
=> x= \(\dfrac{9}{3}\)=3
Vậy x = 3
e) (2x-1)\(^3\) : 7 = 49
(2x-1)\(^3\) = 49.7
(2x-1)\(^3\) = 343
(2x-1)\(^3\) = \(7^3\)
=> 2x-1 = 7
2x = 8
x = 8:2
x = 4
Vậy x = 4
a: \(\Leftrightarrow2x-3=x\)
=>x=3
b: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+\dfrac{5}{4}\cdot2^x=\dfrac{7}{32}\)
=>2^x=1/8
=>x=-3
c: =>2x+7=-4
=>2x=-11
=>x=-11/2
d: =>(4x-3)^2*(4x-4)(4x-2)=0
hay \(x\in\left\{\dfrac{3}{4};1;\dfrac{1}{2}\right\}\)
\(\Leftrightarrow\left(3:\dfrac{4}{32}\cdot x-1\right)^5=243\)
\(\Leftrightarrow\left(24x-1\right)^5=243\)
=>24x-1=3
=>24x=4
hay x=1/6