\(\left\{{}\begin{matrix}x^2+y^2+z^2+2xy-xz-yz=3\\x^2+y^2+yz-xz-2xy=-1\end{matrix}\right.\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 11 2019

Lấy 3 lần pt dưới cộng pt trên ta được:

\(4x^2+4y^2+z^2+2yz-4xz-4xy=0\)

\(\Leftrightarrow\left(2x-y-z\right)^2+3y^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x-y-z=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=0\\z=2x\end{matrix}\right.\)

\(\Rightarrow x^2+4x^2-2x^2=3\Rightarrow x^2=1\Rightarrow\left[{}\begin{matrix}x=1;z=2\\x=-1;z=-2\end{matrix}\right.\)

8 tháng 8 2017

\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)

Lấy (2) cộng (3) ta được

\(x^2+y^2-yz-zx=2\) (4)

Lấy (1) - (4) ta được

\(2x\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)

Xét 2 TH rồi thay vào tìm được y và z

8 tháng 8 2017

1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} x(x+y+z)=2\\ y(y+z+x)=3\\ z(z+x+y)=4\end{matrix}\right.(*)\).

Dễ thấy $x+y+z\neq 0$. Khi đó ta có:

\(\frac{x}{y}=\frac{x(x+y+z)}{y(y+z+x)}=\frac{2}{3}(1)\)

\(\frac{y}{z}=\frac{y(y+z+x)}{z(z+x+y)}=\frac{3}{4}(2)\)

Từ \((1);(2)\Rightarrow \frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) .

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k; y=3k; z=4k\)

Thay vào PT thứ nhất của $(*)$ suy ra:

\(2k(2k+3k+4k)=2\)

\(\Leftrightarrow 18k^2=2\Rightarrow k=\pm \frac{1}{3}\)

Nếu \(k=\frac{1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{2}{3}; 1; \frac{4}{3})\)

Nếu \(k=\frac{-1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{-2}{3}; -1; \frac{-4}{3})\)

22 tháng 11 2019

Lấy 3 lần pt dưới cộng pt trên ta được :
\(4x^2+4y^2+z^2+2yz-4xz-4xy=0\)

\(\Leftrightarrow\left(2x-y-z\right)^2+3y^2=0\)

\(\Leftrightarrow\hept{\begin{cases}y=0\\2x-y-z=0\end{cases}\Rightarrow\hept{\begin{cases}y=0\\z=2x\end{cases}}}\)

\(\Rightarrow x^2+4x^2-2x^2=3\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1;z=2\\x=-1;z=-2\end{cases}}\)

27 tháng 11 2018

3(x2 + y2 + x2) = 3[(x + y + z)2 - 2(xy + yz + zx)] = 3(9 + 2) = 33

Pt thứ 3 tương đương với pt:

x3 + y3 + z3 + 6 = 33

<=> x3 + y3 + z3 = 27 = (x + y + z)3

<=> (x + y + z)3 - x3 - y3 - z3 = 0

<=> 3(x + y)(y + z)(z + x) = 0

Đến đây khá dễ rồi, tự làm tiếp nhé

11 tháng 10 2019

\(b,\)\(ĐK:x\ge\frac{3}{2}\)

\(PT\Leftrightarrow x^2-4+5-\sqrt{6x^2+1}+\sqrt{2x-3}-1=0\)

\(\Leftrightarrow x^2-4+\frac{24-6x^2}{5+\sqrt{6x^2+1}}+\frac{2x-4}{\sqrt{2x-3}+1}=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2-\frac{12+6x}{5+\sqrt{6x^2+1}}+\frac{2}{\sqrt{2x-3}+1}=0\right)\)

Xét ....

\(\Leftrightarrow x=2\left(tm\right)\)