\(\left\{{}\begin{matrix}x^2+y^2=1\\x-y=4\end{matrix}\right.\)

tìm m để hệ phương...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Bài 1:

Khi $m=1$ thì HPT trở thành:

\(\left\{\begin{matrix} x-2y=-1\\ 2x+y=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x-4y=-2\\ 2x+y=2\end{matrix}\right.\)

\(\Rightarrow (2x+y)-(2x-4y)=2-(-2)\)

\(\Leftrightarrow 5y=4\Rightarrow y=\frac{4}{5}\)

\(x=\frac{2-y}{2}=\frac{2-\frac{4}{5}}{2}=\frac{3}{5}\)

Vậy ...........

b)

HPT \(\Leftrightarrow \left\{\begin{matrix} mx-2y=m-2\\ y=m+1-2x\end{matrix}\right.\Rightarrow mx-2(m+1-2x)=m-2\)

\(\Leftrightarrow x(m+4)=3m(*)\)

Để HPT ban đầu có bộ nghiệm (x,y) duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất. Điều này xảy ra khi $m+4\neq 0$ hay $m\neq -4$

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Bài 2:
a)

Khi $m=2$ thì hệ trở thành:
\(\left\{\begin{matrix} x+2y=1\\ 2x+y=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x+4y=2\\ 2x+y=1\end{matrix}\right.\)

\(\Rightarrow (2x+4y)-(2x+y)=2-1\)

\(\Leftrightarrow 3y=1\Rightarrow y=\frac{1}{3}\)

Khi đó: \(x=1-2y=1-2.\frac{1}{3}=\frac{1}{3}\)

Vậy HPT có bộ nghiệm duy nhất $(x,y)=(\frac{1}{3}, \frac{1}{3})$

b)

HPT \(\Leftrightarrow \left\{\begin{matrix} x=1-my\\ mx+y=1\end{matrix}\right.\Rightarrow m(1-my)+y=1\)

\(\Leftrightarrow y(1-m^2)=1-m(*)\)

Để HPT ban đầu có nghiệm duy nhất thì PT $(*)$ cũng phải có nghiệm duy nhất. Điều này xảy ra khi \(1-m^2\neq 0\Leftrightarrow m\neq \pm 1\)

Khi đó:
\(y=\frac{1-m}{1-m^2}=\frac{1}{1+m}\)

\(x=1-my=1-\frac{m}{m+1}=\frac{1}{m+1}\)

Vậy HPT có nghiệm \((x,y)=(\frac{1}{m+1}, \frac{1}{m+1})\)

Để \(x,y>0\Leftrightarrow \frac{1}{m+1}>0\Leftrightarrow m>-1\)

Kết hợp những điều vừa tìm được suy ra $m>-1$ và $m\neq 1$ thì thỏa mãn.

24 tháng 2 2019

\(\left\{{}\begin{matrix}1+\left|y\right|=\sqrt{x^2-2x+2}\\y^2+\left(m-1\right)\left(x^2-2x\right)=m^2-4m+3\end{matrix}\right.\)

mình viết bị sai đề

AH
Akai Haruma
Giáo viên
3 tháng 11 2017

Lời giải:

\(\left\{\begin{matrix} x+xy+y=2m+1\\ xy(x+y)=m^2+m\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} xy=2m+1-(x+y)\\ xy(x+y)=m^2+m\end{matrix}\right.\Rightarrow [2m+1-(x+y)](x+y)=m^2+m\)

Đặt \(x+y=t\Rightarrow t^2-t(2m+1)+m^2+m=0\)

Để pt có bộ nghiệm (x,y) duy nhất thì $t$ phải là duy nhất. Do đó:

\(\Delta=(2m+1)^2-4(m^2+m)=0\Leftrightarrow 1=0\)

(vô lý)

Do đó không tồn tại m để hệ có bộ nghiệm duy nhất.

6 tháng 11 2017

Dạng này làm như sau:

Đặt \(\left\{{}\begin{matrix}x+y=S\\xy=P\end{matrix}\right.\)

Sau đó biến đổi về phương trình bậc 2 theo ẩn S

Để hệ ban đầu có nghiệm duy nhất thì trước hết phương trình theo ẩn S có nghiệm duy nhất hoặc có 2 nghiệm trong đó có 1 nghiệm không thuộc tập xác định của hệ phương trình theo ẩn S, P. Đây mới chỉ là điều kiện cần.

Sau đó thế các nghiệm của S, P vào hệ rồi giải ra xem thử có nghiệm x, y hay không. Đây là điều kiện đủ. Xong 2 cái này thì mới kết luận là hệ có nghiệm duy nhất với m = ????

9 tháng 12 2017

Đặt \(S=x+y\); \(P=xy\) \(\left(S^2\ge4P\right)\); HPT trở thành

\(\left\{{}\begin{matrix}S+P=m+2\\SP=m+1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}P=m+2-S\\\left(m+2-S\right)S=m+1\end{matrix}\right.\)

\(\Rightarrow S^2-S\left(m+2\right)+m+1=0\)

\(\Rightarrow\Delta=m^2\) \(\Rightarrow\left[{}\begin{matrix}S=1\\S=m+1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}S=1\\P=m+1\end{matrix}\right.\curlyvee\left\{{}\begin{matrix}S=m+1\\P=1\end{matrix}\right.\)

* Với \(\left\{{}\begin{matrix}S=1\\P=m+1\end{matrix}\right.\)\(\Rightarrow S^2\ge4P\Leftrightarrow1\ge4\left(m+1\right)\)\(\Leftrightarrow m\le\dfrac{-3}{4}\)

Vậy nên x,y là nghiệm của phương trình

\(X^2-X+m+1=0\) \(\Rightarrow\Delta_1=1-4\left(m+1\right)\)

* Với \(\left\{{}\begin{matrix}S=m+1\\P=1\end{matrix}\right.\)\(\Rightarrow S^2\ge4P\Leftrightarrow\left(m+1\right)^2\ge4\Leftrightarrow\left[{}\begin{matrix}m\le-3\\m\ge1\end{matrix}\right.\)

Vậy x,y là nghiệm của phương trình

\(Y^2-\left(m+1\right)Y+1=0\)\(\Rightarrow\Delta_2=\left(m+1\right)^2-4\)

Để HPT có nghiệm duy nhất

1)\(\Leftrightarrow\left\{{}\begin{matrix}\Delta_1=0\\\Delta_2< 0\end{matrix}\right.\)\(\Leftrightarrow m=\dfrac{-3}{4}\) thỏa mãn đk \(S^2\ge4P\)

2) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta_2=0\\\Delta_1< 0\end{matrix}\right.\)\(\Leftrightarrow m=1\) thỏa mãn ĐK

3) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta_1=0\\\Delta_2=0\end{matrix}\right.\)vô nghiệm

Vậy \(\left[{}\begin{matrix}m=\dfrac{-3}{4}\\m=1\end{matrix}\right.\) thì hệ có 1 nghiệm duy nhất

AH
Akai Haruma
Giáo viên
28 tháng 4 2019

Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} x=2y+3-m\\ 2x+y=3(m+2)\end{matrix}\right.\)

\(\Rightarrow 2(2y+3-m)+y=3(m+2)\)

\(\Leftrightarrow y=m\)

\(\Rightarrow x=2y+3-m=2m+3-m=m+3\)

Vậy HPT có nghiệm $(x,y)=(m+3,m)$

\(\Rightarrow S=x^2+y^2=(m+3)^2+m^2=2m^2+6m+9\)

\(=2(m+\frac{3}{2})^2+\frac{9}{2}\geq \frac{9}{2}\)

Vậy \(S_{\min}=\frac{9}{2}\Leftrightarrow (m+\frac{3}{2})^2=0\Leftrightarrow m=-\frac{3}{2}\)

4 tháng 1 2019

\(\left\{{}\begin{matrix}x=y^2-y+m\left(1\right)\\y=x^2-x+m\left(2\right)\end{matrix}\right.\)

Trừ (2) cho (1), ta được: \(y-x=x^2-y^2+\left(y-x\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

*Với x=y, thay vào (2) ta được:

\(x=x^2-x+m\)

\(\Leftrightarrow x^2-2x+m=0\) (*)

Xét: \(\Delta'=\left(-1\right)^2-m=1-m\)

HPT có nghiệm duy nhất khi và chỉ khi PT(*) có nghiệm kép

\(\Leftrightarrow1-m=0\Leftrightarrow m=1\)

*Với x=-y \(\Leftrightarrow\) y=-x , thay vào (2) ta được:

\(-x=x^2-x+m\)

\(\Leftrightarrow x^2+m=0\) (**)

Xét: \(\Delta'=0^2-m=0-m\)

HPT có nghiệm duy nhất khi và chỉ khi PT(**) có nghiệm kép

\(\Leftrightarrow0-m=0\Leftrightarrow m=0\)

Vậy m=1 hoặc m=0 thì hệ có 1 nghiệm duy nhất.