Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Khi $m=1$ thì HPT trở thành:
\(\left\{\begin{matrix} x-2y=-1\\ 2x+y=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x-4y=-2\\ 2x+y=2\end{matrix}\right.\)
\(\Rightarrow (2x+y)-(2x-4y)=2-(-2)\)
\(\Leftrightarrow 5y=4\Rightarrow y=\frac{4}{5}\)
\(x=\frac{2-y}{2}=\frac{2-\frac{4}{5}}{2}=\frac{3}{5}\)
Vậy ...........
b)
HPT \(\Leftrightarrow \left\{\begin{matrix} mx-2y=m-2\\ y=m+1-2x\end{matrix}\right.\Rightarrow mx-2(m+1-2x)=m-2\)
\(\Leftrightarrow x(m+4)=3m(*)\)
Để HPT ban đầu có bộ nghiệm (x,y) duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất. Điều này xảy ra khi $m+4\neq 0$ hay $m\neq -4$
Bài 2:
a)
Khi $m=2$ thì hệ trở thành:
\(\left\{\begin{matrix}
x+2y=1\\
2x+y=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
2x+4y=2\\
2x+y=1\end{matrix}\right.\)
\(\Rightarrow (2x+4y)-(2x+y)=2-1\)
\(\Leftrightarrow 3y=1\Rightarrow y=\frac{1}{3}\)
Khi đó: \(x=1-2y=1-2.\frac{1}{3}=\frac{1}{3}\)
Vậy HPT có bộ nghiệm duy nhất $(x,y)=(\frac{1}{3}, \frac{1}{3})$
b)
HPT \(\Leftrightarrow \left\{\begin{matrix} x=1-my\\ mx+y=1\end{matrix}\right.\Rightarrow m(1-my)+y=1\)
\(\Leftrightarrow y(1-m^2)=1-m(*)\)
Để HPT ban đầu có nghiệm duy nhất thì PT $(*)$ cũng phải có nghiệm duy nhất. Điều này xảy ra khi \(1-m^2\neq 0\Leftrightarrow m\neq \pm 1\)
Khi đó:
\(y=\frac{1-m}{1-m^2}=\frac{1}{1+m}\)
\(x=1-my=1-\frac{m}{m+1}=\frac{1}{m+1}\)
Vậy HPT có nghiệm \((x,y)=(\frac{1}{m+1}, \frac{1}{m+1})\)
Để \(x,y>0\Leftrightarrow \frac{1}{m+1}>0\Leftrightarrow m>-1\)
Kết hợp những điều vừa tìm được suy ra $m>-1$ và $m\neq 1$ thì thỏa mãn.
\(\left\{{}\begin{matrix}1+\left|y\right|=\sqrt{x^2-2x+2}\\y^2+\left(m-1\right)\left(x^2-2x\right)=m^2-4m+3\end{matrix}\right.\)
mình viết bị sai đề
Lời giải:
\(\left\{\begin{matrix} x+xy+y=2m+1\\ xy(x+y)=m^2+m\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} xy=2m+1-(x+y)\\ xy(x+y)=m^2+m\end{matrix}\right.\Rightarrow [2m+1-(x+y)](x+y)=m^2+m\)
Đặt \(x+y=t\Rightarrow t^2-t(2m+1)+m^2+m=0\)
Để pt có bộ nghiệm (x,y) duy nhất thì $t$ phải là duy nhất. Do đó:
\(\Delta=(2m+1)^2-4(m^2+m)=0\Leftrightarrow 1=0\)
(vô lý)
Do đó không tồn tại m để hệ có bộ nghiệm duy nhất.
Dạng này làm như sau:
Đặt \(\left\{{}\begin{matrix}x+y=S\\xy=P\end{matrix}\right.\)
Sau đó biến đổi về phương trình bậc 2 theo ẩn S
Để hệ ban đầu có nghiệm duy nhất thì trước hết phương trình theo ẩn S có nghiệm duy nhất hoặc có 2 nghiệm trong đó có 1 nghiệm không thuộc tập xác định của hệ phương trình theo ẩn S, P. Đây mới chỉ là điều kiện cần.
Sau đó thế các nghiệm của S, P vào hệ rồi giải ra xem thử có nghiệm x, y hay không. Đây là điều kiện đủ. Xong 2 cái này thì mới kết luận là hệ có nghiệm duy nhất với m = ????
Đặt \(S=x+y\); \(P=xy\) \(\left(S^2\ge4P\right)\); HPT trở thành
\(\left\{{}\begin{matrix}S+P=m+2\\SP=m+1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}P=m+2-S\\\left(m+2-S\right)S=m+1\end{matrix}\right.\)
\(\Rightarrow S^2-S\left(m+2\right)+m+1=0\)
\(\Rightarrow\Delta=m^2\) \(\Rightarrow\left[{}\begin{matrix}S=1\\S=m+1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}S=1\\P=m+1\end{matrix}\right.\curlyvee\left\{{}\begin{matrix}S=m+1\\P=1\end{matrix}\right.\)
* Với \(\left\{{}\begin{matrix}S=1\\P=m+1\end{matrix}\right.\)\(\Rightarrow S^2\ge4P\Leftrightarrow1\ge4\left(m+1\right)\)\(\Leftrightarrow m\le\dfrac{-3}{4}\)
Vậy nên x,y là nghiệm của phương trình
\(X^2-X+m+1=0\) \(\Rightarrow\Delta_1=1-4\left(m+1\right)\)
* Với \(\left\{{}\begin{matrix}S=m+1\\P=1\end{matrix}\right.\)\(\Rightarrow S^2\ge4P\Leftrightarrow\left(m+1\right)^2\ge4\Leftrightarrow\left[{}\begin{matrix}m\le-3\\m\ge1\end{matrix}\right.\)
Vậy x,y là nghiệm của phương trình
\(Y^2-\left(m+1\right)Y+1=0\)\(\Rightarrow\Delta_2=\left(m+1\right)^2-4\)
Để HPT có nghiệm duy nhất
1)\(\Leftrightarrow\left\{{}\begin{matrix}\Delta_1=0\\\Delta_2< 0\end{matrix}\right.\)\(\Leftrightarrow m=\dfrac{-3}{4}\) thỏa mãn đk \(S^2\ge4P\)
2) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta_2=0\\\Delta_1< 0\end{matrix}\right.\)\(\Leftrightarrow m=1\) thỏa mãn ĐK
3) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta_1=0\\\Delta_2=0\end{matrix}\right.\)vô nghiệm
Vậy \(\left[{}\begin{matrix}m=\dfrac{-3}{4}\\m=1\end{matrix}\right.\) thì hệ có 1 nghiệm duy nhất
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
x=2y+3-m\\
2x+y=3(m+2)\end{matrix}\right.\)
\(\Rightarrow 2(2y+3-m)+y=3(m+2)\)
\(\Leftrightarrow y=m\)
\(\Rightarrow x=2y+3-m=2m+3-m=m+3\)
Vậy HPT có nghiệm $(x,y)=(m+3,m)$
\(\Rightarrow S=x^2+y^2=(m+3)^2+m^2=2m^2+6m+9\)
\(=2(m+\frac{3}{2})^2+\frac{9}{2}\geq \frac{9}{2}\)
Vậy \(S_{\min}=\frac{9}{2}\Leftrightarrow (m+\frac{3}{2})^2=0\Leftrightarrow m=-\frac{3}{2}\)
\(\left\{{}\begin{matrix}x=y^2-y+m\left(1\right)\\y=x^2-x+m\left(2\right)\end{matrix}\right.\)
Trừ (2) cho (1), ta được: \(y-x=x^2-y^2+\left(y-x\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
*Với x=y, thay vào (2) ta được:
\(x=x^2-x+m\)
\(\Leftrightarrow x^2-2x+m=0\) (*)
Xét: \(\Delta'=\left(-1\right)^2-m=1-m\)
HPT có nghiệm duy nhất khi và chỉ khi PT(*) có nghiệm kép
\(\Leftrightarrow1-m=0\Leftrightarrow m=1\)
*Với x=-y \(\Leftrightarrow\) y=-x , thay vào (2) ta được:
\(-x=x^2-x+m\)
\(\Leftrightarrow x^2+m=0\) (**)
Xét: \(\Delta'=0^2-m=0-m\)
HPT có nghiệm duy nhất khi và chỉ khi PT(**) có nghiệm kép
\(\Leftrightarrow0-m=0\Leftrightarrow m=0\)
Vậy m=1 hoặc m=0 thì hệ có 1 nghiệm duy nhất.
Where is "m"???
?????