Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)
trừ 2 vế của pt cho nhau ta tìm được
\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)
để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)
định lười nhưng mà mới học, xử luôn cho nhớ
* hpt \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)
\(\Rightarrow7x=7m\Leftrightarrow x=m\)
* hpt \(\Leftrightarrow\left\{{}\begin{matrix}3x-y=2m-1\\3x+6y=9m+6\end{matrix}\right.\)
\(\Rightarrow7y=7m+7\Leftrightarrow y=m+1\)
* \(x^2+y^2=10\Leftrightarrow m^2+\left(m+1\right)^2=10\)
(tự làm tiếp nhé)
- Ta có hệ phương trình :\(\left\{{}\begin{matrix}3x-y=2m-1\left(I\right)\\x+2y=3m+2\left(II\right)\end{matrix}\right.\)
- Từ ( I ) ta có phương trình : \(3x-y=2m-1\)
=> \(x=\frac{2m-1+y}{3}\) ( III )
- Thay \(x=\frac{2m-1+y}{3}\) vào phương trình ( II ) ta được :
\(\frac{2m-1+y}{3}+2y=3m+2\)
=> \(\frac{2m-1+y}{3}+\frac{6y}{2}=\frac{9m}{3}+\frac{6}{3}\)
=> \(2m-1+y+6y=9m+6\)
=> \(y+6y=9m+6+1-2m\)
=> \(7y=7m+7\)
=> \(y=\frac{7m+7}{7}=\frac{7\left(m+1\right)}{7}=m+1\)
- Thay \(y=m+1\) vào phương trình ( III ) ta được :
\(x=\frac{2m-1+m+1}{3}\)
=> \(x=\frac{3m}{3}=m\)
- Ta có : \(x^2+y^2=5\)
Thay \(x=m,y=m+1\) vào phương trình trên ta được :
\(m^2+\left(m+1\right)^2=5\)
=> \(m^2+m^2+2m+1=5\)
=> \(2m^2+2m-4=0\)
=> \(m^2+m-2=0\)
=> \(m^2+m-2=0\)
=> \(m^2+2m-m-2=0\)
=> \(m\left(m-1\right)+2\left(m-1\right)=0\)
=> \(\left(m+2\right)\left(m-1\right)=0\)
=> \(\left[{}\begin{matrix}m+2=0\\m-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}m=-2\\m=1\end{matrix}\right.\)
Vậy m = -2, m = 1 thỏa mãn điều kiện trên .
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}4xy+8x-6y-12=4xy-12x+54\\3xy-3x+3y-3=3xy+3y-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}20x-6y=66\\-3x=-9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}y=1-x\\x^2+xy+3=0\end{matrix}\right.\)
\(\Leftrightarrow x^2+x\left(1-x\right)+3=0\)
\(\Leftrightarrow x+3=0\Rightarrow x=-3\Rightarrow y=4\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{2x-5}{3}\\x^2-y^2=40\end{matrix}\right.\)
\(\Rightarrow x^2-\left(\frac{2x-5}{3}\right)^2-40=0\)
\(\Leftrightarrow9x^2-\left(4x^2-20x+25\right)-360=0\)
\(\Leftrightarrow5x^2+20x-385=0\)
\(\Rightarrow\left[{}\begin{matrix}x=7\Rightarrow y=3\\x=-11\Rightarrow y=-9\end{matrix}\right.\)
d.
\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{36-3x}{2}\\\left(x-2\right)\left(y-3\right)=18\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)\left(\frac{36-3x}{2}-3\right)=18\)
\(\Leftrightarrow\left(x-2\right)\left(10-x\right)=12\)
\(\Leftrightarrow-x^2+12x-32=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=12\\x=8\Rightarrow y=6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}7x=7m\\x+2y=3m+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)
a/ \(x^2+y^2=1\)
\(\Leftrightarrow m^2+\left(m+1\right)^2=1\)
\(\Leftrightarrow2m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)
b/ \(x-y=m-\left(m+1\right)=-1\)
\(\Leftrightarrow x-y+1=0\)
Đây là hệ thức liên hệ x;y ko phụ thuộc m
Câu 1 \(\left\{{}\begin{matrix}2x+2y+2xy=10\left(1\right)\\x^2+y^2=5\left(2\right)\end{matrix}\right.\)
=>2.(2) - (1)=\(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)
<=>\(\left\{{}\begin{matrix}x-1=0\\y-1=0\\x-y=0\end{matrix}\right.\) =>x=y=1
Câu 2 dùng vi-et đảo
Câu 3 rút x=y+1 từ pt trên rồi thế xuống dưới
Câu 4 lấy pt trên cộng pt dưới rồi xét dấu GTTĐ