\(\left\{{}\begin{matrix}\text{3x-y=2m - 1}\\x+2y=3m+2\end{matrix}\right.\)

tìm m...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

1)

\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)

trừ 2 vế của pt cho nhau ta tìm được

\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)

để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)

13 tháng 5 2018

định lười nhưng mà mới học, xử luôn cho nhớ

* hpt \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)

\(\Rightarrow7x=7m\Leftrightarrow x=m\)

* hpt \(\Leftrightarrow\left\{{}\begin{matrix}3x-y=2m-1\\3x+6y=9m+6\end{matrix}\right.\)

\(\Rightarrow7y=7m+7\Leftrightarrow y=m+1\)

* \(x^2+y^2=10\Leftrightarrow m^2+\left(m+1\right)^2=10\)

(tự làm tiếp nhé)

20 tháng 5 2018

Ôn tập hệ hai phương trình bậc nhất hai ẩn

23 tháng 2 2020

- Ta có hệ phương trình :\(\left\{{}\begin{matrix}3x-y=2m-1\left(I\right)\\x+2y=3m+2\left(II\right)\end{matrix}\right.\)

- Từ ( I ) ta có phương trình : \(3x-y=2m-1\)

=> \(x=\frac{2m-1+y}{3}\) ( III )

- Thay \(x=\frac{2m-1+y}{3}\) vào phương trình ( II ) ta được :

\(\frac{2m-1+y}{3}+2y=3m+2\)

=> \(\frac{2m-1+y}{3}+\frac{6y}{2}=\frac{9m}{3}+\frac{6}{3}\)

=> \(2m-1+y+6y=9m+6\)

=> \(y+6y=9m+6+1-2m\)

=> \(7y=7m+7\)

=> \(y=\frac{7m+7}{7}=\frac{7\left(m+1\right)}{7}=m+1\)

- Thay \(y=m+1\) vào phương trình ( III ) ta được :

\(x=\frac{2m-1+m+1}{3}\)

=> \(x=\frac{3m}{3}=m\)

- Ta có : \(x^2+y^2=5\)

Thay \(x=m,y=m+1\) vào phương trình trên ta được :

\(m^2+\left(m+1\right)^2=5\)

=> \(m^2+m^2+2m+1=5\)

=> \(2m^2+2m-4=0\)

=> \(m^2+m-2=0\)

=> \(m^2+m-2=0\)

=> \(m^2+2m-m-2=0\)

=> \(m\left(m-1\right)+2\left(m-1\right)=0\)

=> \(\left(m+2\right)\left(m-1\right)=0\)

=> \(\left[{}\begin{matrix}m+2=0\\m-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}m=-2\\m=1\end{matrix}\right.\)

Vậy m = -2, m = 1 thỏa mãn điều kiện trên .

NV
5 tháng 3 2020

1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)

\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)

Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)

2. Không thấy m nào ở hệ?

3. Bạn tự giải câu a

b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)

\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)

\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)

\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu

NV
5 tháng 3 2020

4.

\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)

NV
3 tháng 3 2020

a.

\(\Leftrightarrow\left\{{}\begin{matrix}4xy+8x-6y-12=4xy-12x+54\\3xy-3x+3y-3=3xy+3y-12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}20x-6y=66\\-3x=-9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}y=1-x\\x^2+xy+3=0\end{matrix}\right.\)

\(\Leftrightarrow x^2+x\left(1-x\right)+3=0\)

\(\Leftrightarrow x+3=0\Rightarrow x=-3\Rightarrow y=4\)

NV
3 tháng 3 2020

c.

\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{2x-5}{3}\\x^2-y^2=40\end{matrix}\right.\)

\(\Rightarrow x^2-\left(\frac{2x-5}{3}\right)^2-40=0\)

\(\Leftrightarrow9x^2-\left(4x^2-20x+25\right)-360=0\)

\(\Leftrightarrow5x^2+20x-385=0\)

\(\Rightarrow\left[{}\begin{matrix}x=7\Rightarrow y=3\\x=-11\Rightarrow y=-9\end{matrix}\right.\)

d.

\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{36-3x}{2}\\\left(x-2\right)\left(y-3\right)=18\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)\left(\frac{36-3x}{2}-3\right)=18\)

\(\Leftrightarrow\left(x-2\right)\left(10-x\right)=12\)

\(\Leftrightarrow-x^2+12x-32=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=12\\x=8\Rightarrow y=6\end{matrix}\right.\)

NV
13 tháng 4 2020

\(\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}7x=7m\\x+2y=3m+2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)

a/ \(x^2+y^2=1\)

\(\Leftrightarrow m^2+\left(m+1\right)^2=1\)

\(\Leftrightarrow2m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)

b/ \(x-y=m-\left(m+1\right)=-1\)

\(\Leftrightarrow x-y+1=0\)

Đây là hệ thức liên hệ x;y ko phụ thuộc m

24 tháng 2 2018

Câu 1 \(\left\{{}\begin{matrix}2x+2y+2xy=10\left(1\right)\\x^2+y^2=5\left(2\right)\end{matrix}\right.\)

=>2.(2) - (1)=\(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)

<=>\(\left\{{}\begin{matrix}x-1=0\\y-1=0\\x-y=0\end{matrix}\right.\) =>x=y=1

Câu 2 dùng vi-et đảo

Câu 3 rút x=y+1 từ pt trên rồi thế xuống dưới

Câu 4 lấy pt trên cộng pt dưới rồi xét dấu GTTĐ