Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{y+1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=3\\\left(a^2-1\right)b+\left(b^2-1\right)a+a+b=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\a^2b+ab^2=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\ab\left(a+b\right)=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\ab=\frac{m}{3}\end{matrix}\right.\)
Hệ đã cho có nghiệm khi và chỉ khi pt:
\(\left\{{}\begin{matrix}\frac{m}{3}\ge0\\\left(a+b\right)^2\ge4ab\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\9\ge\frac{4m}{3}\end{matrix}\right.\)
\(\Rightarrow0\le m\le\frac{27}{4}\)
ĐK: \(x,y\ge0\)
\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\x\sqrt{x}+y\sqrt{y}=1-3m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)=1-3m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\\left(\sqrt{x}+\sqrt{y}\right)^2-3\sqrt{xy}=1-3m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\\sqrt{xy}=m\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{y}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(\Rightarrow a,b\) là nghiệm phương trình \(t^2-t+m=0\left(1\right)\)
Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm không âm
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1-4m\ge0\\x_1+x_2\ge0\\x_1x_2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{1}{4}\\1\ge0\\m\ge0\end{matrix}\right.\Leftrightarrow0\le m\le\dfrac{1}{4}\)
1.
\(\left\{{}\begin{matrix}x-2y-\sqrt{xy}=0\\\sqrt{x-1}-\sqrt{2y-1}=1\end{matrix}\right.\)
\(pt\left(1\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-2\sqrt{y}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=-\sqrt{y}\\\sqrt{x}=\sqrt{2y}\end{matrix}\right.\)
cái đầu tiên loại vì x=y=0 không phải là nghiệm của hệ
suy ra x=2y thày vào pt(2) ta thấy 0 = 1 vô lý
vậy pt vô nghiệm
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{y-3}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=m\\a^2-1+b^2+3=2\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+m\\a^2+b^2=2m\end{matrix}\right.\)
\(\Rightarrow\left(b+m\right)^2+b^2=2m\)
\(\Leftrightarrow2b^2+2m.b+m^2-2m=0\) (1)
Hệ đã cho có nghiệm khi và chỉ khi (1) có ít nhất 1 nghiệm không âm
Để (1) có nghiệm \(\Leftrightarrow\Delta'=m^2-2\left(m^2-2m\right)\ge0\Rightarrow0\le m\le4\)
Để (1) có 2 nghiệm đều âm \(\Leftrightarrow\left\{{}\begin{matrix}b_1+b_2=-\frac{m}{2}< 0\\b_1b_2=\frac{m^2-2m}{2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>2\)
Vậy để hệ đã cho có nghiệm \(\Leftrightarrow0\le m\le2\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\a^3+b^3=1-3m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\\left(a+b\right)^3-3ab\left(a+b\right)=1-3m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\ab=m\end{matrix}\right.\)
Để hệ đã cho có nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}1\ge4m\\1>0\\m\ge0\end{matrix}\right.\) \(\Rightarrow0\le m\le\frac{1}{4}\)