Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Khi $m=1$ thì HPT trở thành:
\(\left\{\begin{matrix} x-2y=-1\\ 2x+y=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x-4y=-2\\ 2x+y=2\end{matrix}\right.\)
\(\Rightarrow (2x+y)-(2x-4y)=2-(-2)\)
\(\Leftrightarrow 5y=4\Rightarrow y=\frac{4}{5}\)
\(x=\frac{2-y}{2}=\frac{2-\frac{4}{5}}{2}=\frac{3}{5}\)
Vậy ...........
b)
HPT \(\Leftrightarrow \left\{\begin{matrix} mx-2y=m-2\\ y=m+1-2x\end{matrix}\right.\Rightarrow mx-2(m+1-2x)=m-2\)
\(\Leftrightarrow x(m+4)=3m(*)\)
Để HPT ban đầu có bộ nghiệm (x,y) duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất. Điều này xảy ra khi $m+4\neq 0$ hay $m\neq -4$
Bài 2:
a)
Khi $m=2$ thì hệ trở thành:
\(\left\{\begin{matrix}
x+2y=1\\
2x+y=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
2x+4y=2\\
2x+y=1\end{matrix}\right.\)
\(\Rightarrow (2x+4y)-(2x+y)=2-1\)
\(\Leftrightarrow 3y=1\Rightarrow y=\frac{1}{3}\)
Khi đó: \(x=1-2y=1-2.\frac{1}{3}=\frac{1}{3}\)
Vậy HPT có bộ nghiệm duy nhất $(x,y)=(\frac{1}{3}, \frac{1}{3})$
b)
HPT \(\Leftrightarrow \left\{\begin{matrix} x=1-my\\ mx+y=1\end{matrix}\right.\Rightarrow m(1-my)+y=1\)
\(\Leftrightarrow y(1-m^2)=1-m(*)\)
Để HPT ban đầu có nghiệm duy nhất thì PT $(*)$ cũng phải có nghiệm duy nhất. Điều này xảy ra khi \(1-m^2\neq 0\Leftrightarrow m\neq \pm 1\)
Khi đó:
\(y=\frac{1-m}{1-m^2}=\frac{1}{1+m}\)
\(x=1-my=1-\frac{m}{m+1}=\frac{1}{m+1}\)
Vậy HPT có nghiệm \((x,y)=(\frac{1}{m+1}, \frac{1}{m+1})\)
Để \(x,y>0\Leftrightarrow \frac{1}{m+1}>0\Leftrightarrow m>-1\)
Kết hợp những điều vừa tìm được suy ra $m>-1$ và $m\neq 1$ thì thỏa mãn.
Hệ có nghiệm duy nhất khi \(\dfrac{a}{a'}\ne\dfrac{b}{b'}\) \(\Rightarrow\)\(m\ne\dfrac{1}{m}\left(m\ne0\right)\)
\(\Leftrightarrow m^2\ne1\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-1\end{matrix}\right.\)
vậy hệ phương trình có nghiệm duy nhất khi \(m\ne\left\{{}\begin{matrix}-1\\0\\1\end{matrix}\right.\)
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
y=m-mx\\
x+my=m^2\end{matrix}\right.\)
\(\Rightarrow x+m(m-mx)=m^2\)
\(\Leftrightarrow x-m^2x=0\Leftrightarrow x(1-m^2)=0 (*)\)
Để HPT có nghiệm duy nhất thì PT $(*)$ cũng phải có nghiệm duy nhất.
Điều này xảy ra khi \(1-m^2\neq 0\Rightarrow m\neq \pm 1\)
Ta có :
\(\left\{{}\begin{matrix}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-m^2+2\\\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-m^2+2\\mx+x+m^2x-m^3+2m=2m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-m^2+2\\x\left(m+m^2+1\right)=m^3-1\end{matrix}\right.\)
Để hệ pt có nghiệm duy nhất :
\(\Leftrightarrow m^2+m+1>0\)
\(\Leftrightarrow\left(m+\frac{1}{2}\right)^2+\frac{3}{4}>0\) (luôn đúng)
Khi đó hệ pt có nghiệm duy nhất là :
\(\left\{{}\begin{matrix}x=m-1\\y=2-m\end{matrix}\right.\)
Vậy...
Ta có :
\(P=\left(m-1\right)\left(2-m\right)\)
\(=2m-m^2-2+m\)
\(=3m-m^2-2\)
\(=\frac{1}{4}-\left(m-\frac{3}{2}\right)^2\le\frac{1}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{3}{2}\)
Vậy...
Lần lượt lấy pt (3) trừ pt (1) và pt (2) trừ 2 lần pt (1) ta được:
\(\left\{{}\begin{matrix}\left(m-1\right)y+4z=1\\y+\left(m+2\right)z=1\end{matrix}\right.\)
Hệ đã cho vô nghiệm khi:
\(\dfrac{1}{m-1}=\dfrac{m+2}{4}\ne\dfrac{1}{1}\)
\(\Leftrightarrow m=-3\)
Bai1:
\(-2x+\frac{3}{5}\le\frac{3\left(2x-7\right)}{3}\Leftrightarrow-10x+3\le5\left(2x-7\right)\Leftrightarrow-10x+3\le10x-35\)
\(\Leftrightarrow\left(10+10\right)x\ge3+35\Rightarrow x\ge\frac{38}{20}=\frac{19}{10}\)
Bài
\(\left\{\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\Leftrightarrow\left(I\right)\left\{\begin{matrix}x>1-m\\x< 3m-2\end{matrix}\right.\)
Hệ (I) có nghiệm cần m thỏa mãn:
\(1-m< 3m-2\Leftrightarrow1+2< 3m+m\Rightarrow m>\frac{3}{2}\)
Kết luận: để hệ có nghiệm cần: m>3/2
Nhân 2 vế của pt thứ 2 với m rồi trừ đi pt thứ 3 ta được
\(\Leftrightarrow\left\{{}\begin{matrix}mx+y=1\\-x+m^2y=m-1\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi:
\(m^3+1\ne0\Rightarrow m\ne-1\)