Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định: \(\left\{{}\begin{matrix}x\ne2\\y\ge-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\frac{2}{x-2}+3\sqrt{y+1}=4\\\frac{4}{x-2}-\sqrt{y+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{4}{x-2}+6\sqrt{y+1}=8\\\frac{4}{x-2}-\sqrt{y+1}=1\end{matrix}\right.\Leftrightarrow7\sqrt{y+1}=7\)
\(\Leftrightarrow y+1=1\Leftrightarrow y=0\Rightarrow x=4\)
Vậy........
ĐK: \(y\ge-1\) và \(x\ne2\)
bạn đặt ẩn phụ để giải cho gọn nhé
Đặt \(\left\{{}\begin{matrix}\frac{1}{x-2}=a\\\sqrt{y+1}=b\end{matrix}\right.\)
hệ pt: \(\left\{{}\begin{matrix}2a+3b=4\\4a-b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x-2}=\frac{1}{2}\\\sqrt{y+1}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
Vậy hệ có no
a) Đặt \(\left\{{}\begin{matrix}\frac{1}{x-1}=a\\\frac{1}{y-1}=b\end{matrix}\right.\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}5a+b=10\\a-3b=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15a+3b=30\\a-3b=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-3b=18\\16a=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{x-1}=3\\\frac{1}{y-1}=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{4}{3}\\y=\frac{4}{5}\end{matrix}\right.\)
Vậy...
b) Đặt \(\left\{{}\begin{matrix}\frac{1}{\sqrt{x-7}}=a\\\frac{1}{\sqrt{y+6}}=b\end{matrix}\right.\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}7a-4b=\frac{5}{2}\\5a+3b=\frac{13}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}31a-12b=\frac{15}{2}\\20a+12b=\frac{26}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7a-4b=\frac{5}{2}\\51a=\frac{97}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{97}{306}\\b=\frac{-43}{612}\end{matrix}\right.\)( loại vì \(a,b>0\) )
Vậy hệ vô nghiệm
Is that true .-.
Cho xin solve lại câu b)
hpt \(\Leftrightarrow\left\{{}\begin{matrix}21a-12b=\frac{15}{2}\\20a+12b=\frac{26}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5a+3b=\frac{13}{6}\\41a=\frac{97}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{97}{246}\\b=\frac{8}{123}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{\sqrt{x-7}}=\frac{97}{246}\\\frac{1}{\sqrt{y+6}}=\frac{8}{123}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{126379}{9409}\\y=\frac{14745}{64}\end{matrix}\right.\)
Vậy...
\(e,\left\{{}\begin{matrix}\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\left(x;y\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy\in\left\{2;-3\right\}\end{matrix}\right.\)
Vì \(\frac{x}{y}=2>0\Rightarrow xy>0\Rightarrow xy=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
\(a,\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+\frac{x}{y}=3\\x+\frac{1}{y}+\frac{x}{y}=3\end{matrix}\right.\left(x;y\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=3\\\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+\frac{1}{y}=a\\\frac{x}{y}=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2-b=3\\a+b=3\end{matrix}\right.\)
Làm nốt nha
ĐKXĐ: ...
Do \(\sqrt{1-y^2}\ge0\Rightarrow x>0\)
Tương tự ta có \(y>0\)
Trừ vế cho vế: \(x\sqrt{1-y^2}=y\sqrt{1-x^2}\)
\(\Leftrightarrow x^2\left(1-y^2\right)=y^2\left(1-x^2\right)\)
\(\Leftrightarrow x^2=y^2\Leftrightarrow x=y\)
Thay vào pt đầu: \(x\sqrt{1-x^2}=\frac{1}{4}\Leftrightarrow x^2\left(1-x^2\right)=\frac{1}{16}\Leftrightarrow...\)
xin slot tối làm =)