Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\dfrac{3}{1}\ne\dfrac{-1}{2}\)
nên hệ luôn có nghiệm duy nhất
\(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x-y=2m-1\\3x+6y=9m+6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-7y=2m-1-9m-6=-7m-7\\x+2y=3m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=m+1\\x=3m+2-2m-2=m\end{matrix}\right.\)
\(y-\sqrt{x}=1\)
=>\(m+1-\sqrt{m}=1\)
=>\(m-\sqrt{m}=0\)
=>\(\sqrt{m}\left(\sqrt{m}-1\right)=0\)
=>\(\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)
a) Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2y+2y=2m-1\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2+2\right)=2m-1\\mx=1+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m^2+2}\\x=\dfrac{1+2y}{m}=\left(1+\dfrac{2m-1}{m^2+2}\right)\cdot\dfrac{1}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2+2+2m-1}{m^2+2}\cdot\dfrac{1}{m}=\dfrac{m^2+2m+1}{m\left(m^2+2\right)}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{m^2+2m+1}{m\left(m^2+2\right)}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow m>\dfrac{1}{2}>0\)
Vậy: Khi m>0 thì hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn x>0 và y>0
\(HPT\Leftrightarrow\left\{{}\begin{matrix}x=m-y\\m-y+ym+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-y\\ym=1-m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=m-\dfrac{1-m}{m}=\dfrac{m^2+m-1}{m}\\y=\dfrac{1-m}{m}\end{matrix}\right.\)
\(x+2y>0\\ \Leftrightarrow\dfrac{m^2+m-1}{m}+\dfrac{2-2m}{m}>0\\ \Leftrightarrow\dfrac{m^2-m+1}{m}>0\)
Mà \(m^2-m+1=\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
Vậy \(m>0\) thỏa đề
1: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{1}{-1}=-1\)
=>\(m\ne-1\)
2: \(\left\{{}\begin{matrix}x+y=1\\mx-y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y+mx-y=1+2m\\x+y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(m+1\right)=2m+1\\x+y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2m+1}{m+1}\\y=1-x=1-\dfrac{2m+1}{m+1}=\dfrac{m+1-2m-1}{m+1}=-\dfrac{m}{m+1}\end{matrix}\right.\)
x+2y=2
=>\(\dfrac{2m+1}{m+1}+\dfrac{-2m}{m+1}=2\)
=>\(\dfrac{1}{m+1}=2\)
=>\(m+1=\dfrac{1}{2}\)
=>\(m=-\dfrac{1}{2}\left(nhận\right)\)
Để phương trình có nghiệm duy nhất thì \(\dfrac{m-1}{2}\ne\dfrac{-m}{-1}=m\)
=>\(m-1\ne2m\)
=>\(m\ne-1\)
\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\y=2x-m-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\\left(m-1\right)x-m\left(2x-m-5\right)=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\\left(m-1\right)x-2xm+m^2+5m=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(m-1-2m\right)=-m^2-5m+3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(-m-1\right)=-m^2-2m-1=-\left(m+1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\cdot\left(-1\right)\cdot\left(m+1\right)=-\left(m+1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1\\y=2\left(m+1\right)-m-5=2m+2-m-5=m-3\end{matrix}\right.\)
\(x^2-y^2=24\)
=>\(\left(m+1\right)^2-\left(m-3\right)^2=24\)
=>\(m^2+2m+1-m^2+6m-9=24\)
=>8m-8=24
=>m=4(nhận)
\(\left\{{}\begin{matrix}2x-y=m+1\\x+y=2m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=3m\\2x-y=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m-1\end{matrix}\right.\)
Theo đề: \(x^2-2y-1=0\)
\(\Leftrightarrow m^2-2\left(m-1\right)-1=0\)
\(\Leftrightarrow m^2-2m+1=0\)
\(\Leftrightarrow\left(m-1\right)^2=0\Leftrightarrow m=1\).
Vậy: \(m=1.\)